psf的matlab代码svDeconRL 基于Richardson-Lucy算法的总空间正则化的自由空间变异卷积 随该代码发布的出版物已发布在(开放获取)[1]中: Raphaël Turcotte, Eusebiu Sutu, Carla C. Schmidt, Nigel J. Emptage, Martin J. Booth (2020). "Title", Journal, doi: X 该存储库包含使用具有空间变异点响应的系统对2D图像进行反卷积所需的MATLAB代码。 反卷积基于经过改进的Richardson-Lucy算法,该算法具有总变化正则化以解决空间变化点响应。 还提供了样本数据集。 代码: RLTV_SVdeconv.m:使用基于特征PSF分解的空间变量PSF模型执行具有总变化(TV)正则化的Richardson-Lucy反卷积的功能。 TVL1reg.m:函数使用L1范数在数组M的散度上计算RL算法的总变化正则化因子 ScriptLRTV.m:针对几种模式,迭代次数和TV系数值的给定输入,迭代调用RLTV_SVdeconv()函数的示例脚本。 makeEdgeA
2025-12-10 18:36:25 166.86MB 系统开源
1
matlab匹配滤波代码期末项目 年度项目-电子与通信工程(2013-2017) 该存储库包含用于频谱传感及其模拟的不同技术的matlab代码 提出了一种基于人工智能的决策技术,以集中频谱感知技术(在软结合技术中)在融合中心做出决策。在我们的工作中,我们分析了三种人工智能技术,例如ANN(人工神经网络),Fuzzy -逻辑,模糊神经网络(FNN)来决定通道的占用情况(通道状态)。 在这些FNN中,给出了有关频谱空缺的有效决策。 这些神经网络是根据诸如能量检测,匹配滤波器,PU与SU之间的距离,SNR,频谱效率等参数进行训练的。 在本文中,我们用GLRT组合代替了一种有效的频谱感知方案,即空间虚警,将其与GLRT相结合,以提高鲁棒性,恢复力并缩短感知间隔。 协作频谱感知技术用于减少噪声不确定性和隐藏节点问题,并在二级用户(SU)的虚警概率(PFA)和检测概率(PD)方面实现高性能。 模拟和结果 我们提出的方法的架构 所用技术的流程图 仿真结果 最终结果
2025-12-03 10:13:43 25.8MB 系统开源
1
matlab哈密尔顿代码QuPath QuPath是用于整个载玻片图像分析和数字病理学的开源软件。 QuPath已被贝尔法斯特女王大学开发为研究工具。 它提供了广泛的功能,包括: 注释和可视化的广泛工具 IHC和H&E分析的工作流程 用于常见任务的新算法,例如细胞分割,组织微阵列解阵列 交互式机器学习,例如用于细胞和纹理分类 基于对象的分层数据模型,具有脚本支持 可扩展性,以添加新功能或对不同图像源的支持 易于与其他工具集成,例如MATLAB和ImageJ 总而言之,QuPath旨在为研究人员提供一套新的工具,以对用户和开发人员友好的方式帮助进行生物图像分析。 QuPath是使用GPLv3的免费开放源代码。 要下载要安装的QuPath版本,请转到页面。 有关文档和更多信息,请参见 版权所有2014-2016北爱尔兰贝尔法斯特女王大学 设计,实施和文档 皮特·班克黑德 附加代码和测试 何塞·费尔南德斯(Jose Fernandez) 组长 彼得·汉密尔顿教授 曼努埃尔·萨尔托·特莱兹教授 项目资金 QuPath软件是作为以下项目的一部分而开发的: 投资北爱尔兰(RDO0712612) 英
2025-11-19 11:42:21 69.43MB 系统开源
1
matlab代码续行脑电图 这是一个Matlab工具包,用于计算EEG数据中的对象间相关性(ISC)。 它还包含用于批量处理BrainVision(BV)文件的实用程序功能。 此项目建立在的基础上。 专长: BV文件的批处理实用程序,包括:加载,对齐到相同的起点/终点。 内部中间结果缓存。 这样可以继续停止的运行。 针对多个处理器的优化代码(parfor) 使用引导方法计算数据的重要性。 代码中的详细信息。 用法 请参阅以获取已记录的示例运行。 引用 根据GUN通用公共许可证免费提供EEG-ISC。 如果使用,请引用以下出版物: ……
2025-11-18 18:10:36 31KB 系统开源
1
卡尔曼·克劳迪代码 matlab EnKF_EnOI_ES_EnKS 一个玩具 DA 系统,它使用(强制)一维线性扩散/平流模型来比较以下集成 DA 方案: 集成卡尔曼滤波器:EnKF 集合最优插值:EnOI 合奏平滑:ES 合奏卡尔曼平滑器:EnKS 更新方案一次性考虑所有观察结果(即批量样式)并使用转换矩阵(X5;Evensen,2003)。 我还提供了一个 EnKS 函数,它可以连续吸收观察结果并使用 DART 的样式(两步更新,Anderson,2003)。 这仅仅是一个教育包。 编码风格(在 MATLAB 中)不是一流的。 目的是让用户熟悉不同的集成方案、它们的实现和性能。 首先,您可以运行DA_EnKF_EnOI_ES_EnKS.m来比较DA_EnKF_EnOI_ES_EnKS.m框架中的不同方案。 您可以选择模型(平流或扩散))整体大小和更平滑的滞后DA_EnKF_EnOI_ES_EnKS.m调用单独的函数: EnKF.m 、 EnOI.m 、 ES.m和EnKS.m为了模拟现实场景,2 个模型参数是忐忑。 因此,预测模型不同于用于生成真相的模型。 要研究滞后长度的影响,
2025-11-18 14:14:56 436KB 系统开源
1
matlab的egde源代码概述 matlab_rosbag是一个用于在Matlab中读取ROS袋的库。 它使用C ++ ROS API读取存储的消息,并获取有关包装袋的元数据(例如,主题信息和类似于rosmsg show和rosbag info的消息定义)。 该库还包含使用TF消息的方法。 不需要在计算机上安装ROS即可使用此库。 您可以从github下载适用于Mac和Linux的编译后的代码: 如果您想自己编译东西,请参阅。 警告:如果您的计算机是big-endian,则该库将根本无法工作。 用法 下载该库并将基本目录添加到您的Matlab路径(即,添加包含+ ros和rosbag_wrapper的目录)。 现在,您应该可以访问ros.Bag ,这是一个Matlab类,可以从包中读取有关主题的ROS消息并将其作为结构返回。 多个消息作为单元格数组返回。 要了解代码的工作原理,请转到示例目录,然后查看bag_example.m和tf_example.m 保证结构中的字段与消息定义中的字段顺序相同。 还有一些实用程序可用于将消息从结构转换为矩阵。 注意:在之前,袋子不存储消息定义。 因
2025-11-17 09:13:17 246KB 系统开源
1
欧拉公式求长期率的matlab代码欧拉计划 问题:10001st Prime 通过列出前六个质数:2、3、5、7、11和13,我们可以看到第6个质数是13。 第10001个素数是多少? 指示 将您的过程解决方案编码到lib/10001st_prime.rb文件中。 将您的面向对象的解决方案编码到lib/oo_10001st_prime.rb文件中。 运行learn直到所有RSpec测试通过。 来源 -- 在Learn.co上查看并开始免费学习编码。
2025-11-15 21:48:46 6KB 系统开源
1
SLAM(Simultaneous Localization and Mapping,同时定位与建图)是机器人领域中的关键技术,它允许机器人在未知环境中建立地图并同时确定自身的精确位置。在这个主题下,我们重点关注基于MATLAB实现的LIR-SLAM系统。MATLAB作为一款强大的数值计算和数据可视化工具,被广泛用于科研和教育领域,其易读性和灵活性使其成为SLAM算法实现的一个理想选择。 LIR-SLAM,全称为Lightweight Inertial and Range-based SLAM,是一种轻量级的基于惯性与测距的SLAM方法。该系统可能包括以下关键组件: 1. **传感器融合**:LIR-SLAM可能结合了惯性测量单元(IMU)和测距传感器(如激光雷达或超声波)的数据。IMU提供姿态、速度和加速度信息,而测距传感器则提供环境的几何信息。通过多传感器融合,可以提高定位和建图的精度和鲁棒性。 2. **滤波算法**:在SLAM中,卡尔曼滤波或粒子滤波经常被用来估计机器人状态和环境地图。LIR-SLAM可能采用了扩展卡尔曼滤波(EKF)或者无迹卡尔曼滤波(UKF)等滤波方法,来处理非线性问题。 3. **数据关联**:有效的数据关联策略对于避免重映射和解决循环闭合至关重要。LIR-SLAM可能包含了特征匹配和数据关联算法,以确保新观测到的特征能正确地与已知地图点对应。 4. **地图构建**:LIR-SLAM可能采用了特征点法,通过提取和匹配环境中的显著点来构建地图。这些特征点可以是像素级别的图像特征,也可以是几何结构的抽象表示。 5. **状态估计**:系统会不断更新机器人的位置估计,这涉及到对传感器测量数据的处理,以及对机器人运动模型的理解。 6. **闭环检测**:当机器人回到已探索过的区域时,闭环检测能够识别出这种循环,从而校正累积误差,保持长期定位的准确性。 7. **优化**:为了获得更精确的估计,LIR-SLAM可能会包含全局优化步骤,比如图优化(Gauss-Newton或Levenberg-Marquardt算法),以最小化整个轨迹和地图的误差。 在"压缩包子文件的文件名称列表"中提到的"LIR-SLAM-master"可能是代码仓库的主分支,其中可能包含了源代码、数据集、实验结果和使用说明等资源。通过深入研究这些代码,我们可以理解LIR-SLAM的具体实现细节,例如传感器数据的预处理、滤波器的设计、特征提取和匹配的方法、闭环检测的策略以及系统性能的评估方法。 为了更好地理解和应用LIR-SLAM,你需要具备MATLAB编程基础,了解滤波理论、传感器融合技术,以及SLAM的基本概念。通过阅读和调试代码,你可以将这个系统应用于自己的机器人项目,或者进行二次开发,以适应特定的环境和任务需求。同时,了解相关的开源社区和文献也是持续学习和提升的关键,这样可以帮助你跟踪SLAM领域的最新进展。
2025-11-15 16:04:02 160KB 系统开源
1
"YJTZB_2019:2019年”应急挑战杯”大学生网络安全邀请赛转型原始码及writeUP" 指的是一场在2019年举办的网络安全竞赛,名为“应急挑战杯”。该比赛主要面向大学生,旨在提升他们的网络安全技能和应急响应能力。在此次竞赛中,参赛者需要解决一系列与网络安全相关的问题,可能涉及代码分析、漏洞挖掘、网络防御等多个领域。"转型原始码"可能指的是比赛中提供的源代码,用于让参赛者分析和理解其潜在的安全问题。而"writeUP"通常是指对解题过程和解决方案的详细记录,供参赛者学习和参考。 中的信息简洁明了,再次强调了这是2019年的“应急挑战杯”大学生网络安全邀请赛,并暗示了比赛资料可能包括了比赛过程中涉及到的源代码和解题报告。 "系统开源"表明了提供的资源可能包含一些开源系统或软件的源代码,这为参赛者提供了研究和学习的真实环境,同时也意味着他们需要具备理解和分析开源代码的能力,因为开源项目往往具有复杂性和多样性。 【压缩包子文件的文件名称列表】"YJTZB_2019-master"可能代表了比赛资料的主分支或者核心部分,其中可能包含了所有相关的源代码、writeUP文档和其他辅助材料。"master"通常是Git版本控制系统中的默认分支,代表了项目的主线开发。 在这个压缩包中,参赛者可以期待找到以下内容: 1. **源代码**:这些代码可能是用于构建比赛环境或模拟网络安全问题的,参赛者需要通过阅读和分析这些代码来找出可能的安全漏洞。 2. **writeUP**:这些文档详细记录了解决特定安全问题的步骤和方法,是学习和理解比赛问题的关键资源。 3. **挑战描述**:可能包含对每个问题的背景介绍和目标说明,帮助参赛者理解他们需要完成的任务。 4. **评分标准**:说明了如何评估每个解决方案的有效性和安全性。 5. **示例解决方案**:可能会提供一些基础的或参考性的解题思路,帮助参赛者入门。 6. **工具和资源**:可能包括一些常用的网络安全工具,或者是用于分析和测试代码的特定库或框架。 对于想要提高网络安全技能的学生来说,这个压缩包是一份宝贵的资源。通过研究提供的源代码,他们可以学习到实际的编程实践和安全编程原则。同时,writeUP可以帮助他们理解专业人员是如何处理安全问题的,从而提高他们的分析和解决问题的能力。"应急挑战杯"不仅是一场比赛,更是一个学习和实践网络安全知识的平台。
2025-11-13 12:18:54 1.81MB 系统开源
1
matlab代码区域显示图片Simscape多体中的降阶柔性缸 版权所有2021 The MathWorks,Inc. 该项目将使您开始使用:trade_mark:中的功能块。 该项目包含: 圆柱体的降阶模型 一个Simulink:registered:模型,用于在某些负载条件下测试气缸的性能。 该模型还针对每种加载条件比较降阶模型对和的解析解的响应。 一个脚本,向您展示如何使用:trade_mark:生成降阶模型 提供了圆柱体的降阶模型,但是已设置了项目,因此您可以替换自己的有限元分析(FEA)软件生成的降阶模型。 使用这种简单的几何图形将帮助您了解FEA工具中的配置设置如何转换为Simscape Multibody:trade_mark:。 请参阅此内容,以获取“减阶柔性实心”块的高级概览。 入门 所有文件都组织在一个文件中。 您只需打开项目即可开始。 在项目中使用文件的预期方式是: 在您选择的FEA软件中,为具有以下特性的圆柱梁生成降阶模型(ROM): 半径:r = 0.05 m 长度:L = 1 m 密度:rho = 2700 kg / m ^ 3 杨氏模量:E = 70 GPa 泊松比:0.33 2个边界节点(圆柱体的每个面上一个) 将生成的ROM数据输入到co
2025-11-11 16:33:18 3.03MB 系统开源
1