针对蚁群算法存在易过早收敛、出现停滞现象、陷入局部极值的问题,提出S型信息素更新策略与Alopex算法相耦合的改进蚁群优化算法(IACO).该算法定义全新的S型动态自适应信息素全局更新函数,使信息素增量随迭代次数和目标函数值变化而动态变化,同时耦合Alopex算法以提高算法的局部搜索能力.将IACO算法应用于支持向量机参数的优化中,构成IACO-SVM模型.利用UCI标准数据集进行数值实验.研究结果表明:IACO算法具有较强的寻优性能,IACO-SVM模型具有较高的平均分类准确率和较好的稳定性.
2025-05-25 20:28:48 439KB 蚁群算法 支持向量机 参数优化
1
内容概要:本文详细介绍了如何利用B样条曲线优化路径规划算法在Matlab栅格地图中的应用。首先,文章讲解了Matlab栅格地图的基础构建方法,接着介绍了常见的路径规划算法如A*算法,并展示了其实现方式。随后,重点讨论了B样条曲线的应用,通过调整控制点生成平滑路径,解决了传统路径规划算法生成路径不平滑的问题。此外,还探讨了如何在存在障碍物的情况下进一步优化路径,确保路径既平滑又安全。最后,通过具体实例和实验数据验证了B样条曲线优化的有效性和高效性。 适合人群:对路径规划算法有一定了解并希望深入研究其优化方法的研究人员和技术开发者。 使用场景及目标:适用于机器人导航、自动驾驶等领域,旨在提高路径规划的效率和平滑度,降低机器人运行成本和能耗。 其他说明:文中提供了详细的Matlab代码示例,帮助读者更好地理解和实践B样条曲线优化路径的方法。同时,强调了B样条曲线在局部控制方面的优势,使其成为路径优化的理想工具。
2025-05-20 10:56:01 279KB
1
内容概要:本文介绍了利用遗忘因子递推最小二乘(FFRLS)和扩展卡尔曼滤波(EKF)进行锂电池荷电状态(SOC)联合估计的方法。首先,FFRLS用于在线辨识电池模型参数,如极化电阻和电容,通过引入遗忘因子使旧数据权重逐渐衰减,从而提高参数辨识的准确性。接着,EKF用于处理SOC的非线性估计,结合辨识得到的参数,通过状态预测和更新步骤实现精确的SOC估计。文中详细解释了算法的具体实现步骤,包括矩阵运算、雅可比矩阵计算以及参数初始化等问题。此外,还讨论了低温环境下算法的表现优化措施,如动态调整遗忘因子和加入参数变化率约束。 适合人群:从事电池管理系统研究和开发的技术人员,尤其是对锂电池SOC估计感兴趣的工程师和研究人员。 使用场景及目标:适用于需要精确估计锂电池SOC的应用场景,如电动汽车、储能系统等。主要目标是提高SOC估计的精度,减少误差,特别是在极端温度条件下。 其他说明:文中提供了详细的代码实现和参考文献,帮助读者更好地理解和应用该算法。建议读者结合实际数据进行调试和验证,确保算法的有效性和稳定性。
2025-05-17 13:37:38 1.22MB
1
深度学习(DL,Deep Learning)是计算机科学机器学习(ML,Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标-人工智能(AI,Artificial Intelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。  深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。它在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果 【深度学习】 深度学习是机器学习领域的一个重要分支,其核心在于构建深层次的神经网络模型,模拟人脑的学习过程,以实现对复杂数据的高效处理和理解。它旨在通过多层非线性变换,自动从原始数据中提取特征,从而解决模式识别、图像识别、语音识别等挑战性问题。 【卷积神经网络(CNN)】 卷积神经网络是深度学习中的关键架构,特别适合处理图像数据。CNN由卷积层、池化层、全连接层等组成,其中卷积层通过滤波器(或称卷积核)对输入图像进行扫描,提取特征;池化层则用于降低数据维度,减少计算量,同时保持关键信息;全连接层将前面层提取的特征进行分类决策。 【深度学习的应用】 1. **图像识别**:深度学习,尤其是CNN,已经在图像识别任务中取得了显著成就,如图像分类、物体检测、人脸识别等。 2. **语音识别**:深度学习可以用于语音信号的处理和识别,提高语音识别的准确率。 3. **自然语言处理**:在文本理解、语义分析、机器翻译等领域,深度学习通过词嵌入和循环神经网络等技术推动了显著的进步。 4. **推荐系统**:结合用户行为数据,深度学习可以生成个性化推荐,提高用户体验。 5. **自动驾驶**:在交通标志识别、车辆检测等自动驾驶的关键环节,CNN发挥了重要作用。 【本文主要贡献】 1. **改进LeNet-5模型**:通过对LeNet-5经典模型的扩展和调整,构建了不同结构的卷积神经网络模型,用于光学字符识别(OCR),分析比较不同模型的性能。 2. **多列卷积神经网络**:借鉴Adaboost的思想,设计了一种多列CNN模型,用于交通标志识别(TSR)。通过预处理数据和训练,提高了识别准确率。 3. **实验验证**:通过实验证明了CNN在手写数字识别和交通标志识别问题上的有效性,并与其他分类器进行了比较,评估了CNN在实际应用中的性能优势。 【总结】 深度学习和卷积神经网络的结合为解决复杂的人工智能问题提供了强大工具,从图像识别到自然语言理解,再到语音处理,都有广泛应用。本文通过构建和优化CNN模型,展示了其在光学字符识别和交通标志识别中的高效表现,进一步巩固了深度学习在这些领域的地位。随着技术的不断发展,深度学习和CNN在更多领域的潜力将持续被发掘,为人工智能的进步贡献力量。
2025-05-08 00:15:52 5.99MB 人工智能 深度学习 毕业设计
1
内容概要:本文详细介绍了利用Matlab进行无人机路径规划的方法,重点探讨了三种优化算法:蝙蝠算法(BA)、差分进化蝙蝠算法(DEBA)以及混沌人工势场蝙蝠算法(CPFIBA)。文章首先解释了每种算法的基本原理及其Matlab实现方式,随后展示了它们在2D和3D路径规划中的具体应用场景。特别强调了CPFIBA在复杂地形中的优越表现,如悬崖地形中的高效避障能力。文中还提供了详细的代码片段,帮助读者理解和实现这些算法。最后,通过对比实验结果,展示了不同算法在路径长度、收敛速度等方面的差异。 适合人群:对无人机路径规划感兴趣的科研人员、工程师及高校学生,尤其是有一定Matlab编程基础的人。 使用场景及目标:适用于需要进行无人机路径规划的研究项目或实际应用,旨在提高路径规划效率和避障能力。目标是通过比较不同算法的表现,选择最适合特定任务需求的算法。 其他说明:文章不仅提供了理论讲解,还包括大量实用的代码示例和图表,便于读者动手实践。此外,作者还分享了一些调参技巧和注意事项,有助于进一步优化算法性能。
2025-04-27 22:24:51 567KB
1
内容概要:本文详细介绍了利用MATLAB实现的3船协同围捕控制算法。首先明确了每艘无人船的运动模型,将无人船简化为质点并控制其位置和速度来模拟运动。接着通过核心代码展示了如何计算各船与目标船及其他协作船之间的距离,并据此调整速度以实现围捕。此外,还讨论了算法的优势,如简化复杂问题、清晰展示控制逻辑,以及其在海上救援、海洋监测等领域的潜在应用。 适合人群:对智能船舶技术和MATLAB编程感兴趣的科研人员、工程师及学生。 使用场景及目标:适用于研究多船协同控制策略的学习和实验环境,旨在帮助理解和掌握无人船编队控制的基本原理和技术细节。 其他说明:文中提供了完整的MATLAB代码示例,便于读者动手实践。同时强调了参数调节的重要性,如速度调整系数、安全距离等,确保算法的有效性和稳定性。
2025-04-27 14:18:31 208KB
1
Python是一种强大的编程语言,尤其在数学建模领域中,它凭借其简洁的语法、丰富的库支持和高效的数据处理能力,成为许多科学家和工程师的首选工具。"Python数学建模算法与应用"是一门课程,旨在教授如何利用Python解决实际的数学问题,并进行模型构建和分析。课件和习题解答提供了学习者深入理解和实践这些概念的平台。 在Python数学建模中,主要涉及以下几个关键知识点: 1. **基础语法与数据类型**:Python的基础包括变量、条件语句、循环、函数等,以及各种数据类型如整型、浮点型、字符串、列表、元组、字典等。理解这些是进一步学习的基础。 2. **Numpy库**:Numpy是Python科学计算的核心库,提供高效的多维数组对象和矩阵运算功能。在数学建模中,数组和矩阵操作是常见的,Numpy简化了这些操作。 3. **Pandas库**:Pandas用于数据清洗、整理和分析,它的DataFrame结构非常适合处理表格数据。在建模过程中,数据预处理至关重要,Pandas能帮助我们处理缺失值、异常值和转换数据格式。 4. **Matplotlib和Seaborn**:这两个库主要用于数据可视化,它们可以绘制出各种图表,帮助我们理解数据分布、趋势和关系,对于模型的理解和验证十分关键。 5. **Scipy库**:Scipy包含了许多科学计算的工具,如优化、插值、统计、线性代数和积分等。在数学建模中,这些工具用于解决复杂的计算问题。 6. **Scikit-learn库**:Scikit-learn是机器学习库,提供了各种监督和无监督学习算法,如回归、分类、聚类等,对于预测和分类问题的建模非常实用。 7. **数据分析与模型选择**:在数学建模中,我们需要根据问题选择合适的模型,例如线性回归、逻辑回归、决策树、随机森林、支持向量机等,并通过交叉验证和网格搜索等方法优化模型参数。 8. **算法实现**:课程可能涵盖了各种数学模型的Python实现,如微分方程组的数值解法、最优化问题的求解算法(梯度下降、牛顿法等)。 9. **习题解答**:课后的习题解答部分将帮助学生巩固所学,通过实际操作来提升理解和应用能力。 10. **课件**:课件可能包含讲解、示例代码和案例分析,帮助学生系统地学习Python数学建模的全过程。 在"Python数学建模算法与应用"的课程中,学生不仅会学习到Python的基本语法和高级特性,还会接触到实际的数学建模问题,如预测、分类、最优化等问题的解决方案。通过kwan1117这个文件,学生可以查看课件内容,解答习题,进一步提升自己的技能。在实践中不断探索和掌握Python在数学建模中的应用,将有助于培养出解决实际问题的能力。
2024-08-21 10:14:34 81.18MB
1
图像处理与计算机视觉算法及应用例程.rar
1
计算机视觉算法与应用
2024-05-06 12:11:31 38.5MB
1
基于CNN的中文文本分类算法(可应用于垃圾邮件过滤、情感分析等场景)
2024-04-14 09:54:07 13.33MB
1