matlab 基于稀疏反馈恢复算法
2023-10-05 20:48:24 452B 算法
1
2020年9月9日更新: 我尝试拉动并运行它,以发现它与最新的pytorch和Windows不兼容。 我将在下周更新它-现在不会运行。 -本 用法 该演示需要 。 首先,使用--help执行python run_demo.py来查看可选参数。 默认实验是带有MNIST的字典学习演示。 目的 该存储库的最终目标是提供一个稀疏的编码库,该库可实现用于(1)词典学习,(2)传统/凸代码推断(例如ISTA,SALSA)和(3)“展开”可学习编码器(例如,)。 现在,字典学习正在不断发展。 特别是,我正在构建结合了(2)和(3)的编码器类。 然后,我将概括用于形态学成分分析(MCA)的类,这是一种用于源分离的稀疏编码方法。 稀疏编码背景 用信号或图像的基本组成部分来表示通常很有用。 例如,笑脸可以有效地描述为“圆,两个点和曲线”。 至少,这比“像素1:值0.1。像素2:值1”更有效,以此类推。
2023-07-01 19:40:41 2.4MB Python
1
基于压缩感知的图像加密算法,稀疏基用的是小波,重构用的是OMP(Compressed sensing image encryption algorithm)
2023-05-09 20:48:29 59KB matlab 重构 源码软件 开发语言
动态压缩感知(DSC)是压缩感知领域中一个重要的研究分支,它是近几年新兴起的一种信号处理与分析方法,与传统的压缩感知理论不同,DSC研究的对象是稀疏时变信号,并且已在视频信号处理和动态核磁共振成像等方面显示出了强大的应用潜力。本节正是在此基础上,提出了一种用于多普勒频率跟踪估计的DSC方法。首先,通过前一跟踪时刻所得到的先验DOA稀疏信息,获得当前跟踪时刻信号向量中各位置非零元素的分布概率,继而建立起动态DOA的稀疏概率模型。然后,采用加权l_1范数最小化方法重构出当前跟踪时刻的信号向量,从而确定非零元素的位置,获得DOA的实时估计值,最终实现运动目标的动态DOA跟踪。
matlab迭代阈值代码Sista-rnn 论文代码 [1] S. Wisdom,T。Powers,J。Pitton和L. Atlas,“通过展开迭代阈值来建立顺序网络以进行顺序稀疏恢复”,ICASSP 2017,美国路易斯安那州新奥尔良,2017年3月 [2] S. Wisdom,T。Powers,J。Pitton和L. Atlas,“使用顺序稀疏恢复的可解释的递归神经网络”,arXiv预印本arXiv:1611.07252,2016年。在NIPS 2016复杂可解释机器学习研讨会上发表系统公司,西班牙巴塞罗那,2016年12月 通过以下方式包含代码: Stephen J. Wright,Robert D. Nowak和Mario Figueiredo,可从以下网站获得 Salman Asif,可从以下途径获得 Martin Arjovsky,Amar Shah和Yoshua Bengio,可从以下网站获得 要复制论文的结果,请按照下列步骤操作: 下载可从以下网站获得的Caltech-256数据集 执行“ run_supervised.sh”脚本。 这将为所有其他功能加载和预处理Ca
2023-04-20 01:00:03 370KB 系统开源
1
nmf的matlab代码SDGNMF 用于图像共聚的稀疏双图正则化NMF 此存储库实现了Jing Sun等人针对“稀疏双图正则化NMF进行图像共聚”提出的聚类算法的迭代更新过程。此代码在人脸上进行聚类实验(ORL-32和PIE-pose27 )和对象(COIL20)数据集以获得AC和NMI,然后验证SDGNMF的聚类有效性。 此外,该代码还可以显示我们的稀疏性研究和运行时间,以便与其他基于NMF的聚类方法进行比较。 依存关系 该代码支持Matlab。 跑步 主目录 下载本文 引文 如果您认为此代码有用,请引用: 孙静,王志辉,孙富明,李浩杰*。 用于图像共聚的稀疏双图正则化NMF。 神经计算,2018,316(NOV.17):156-165。
2023-04-14 21:01:13 40.68MB 系统开源
1
贪婪追踪算法之 MP 算法的 Python 代码实现。可用于过完备字典对信号的稀疏表示或信号压缩等。适用于科研人员以及大学生毕业论文的算法构建。
2023-04-12 12:34:59 2KB 算法 python 软件/插件 贪婪追踪算法
1
为消除非受控训练环境中光照/表情变化的不利影响,控制部分遮挡/伪装对人脸图像的破坏程度,提出了一种基于低秩矩阵恢复的字典优化设计,以增强稀疏表示人脸识别的性能.首先对存在非受控干扰成分的训练字典进行低秩矩阵恢复,获得相对"干净"的训练图像进行特征提取;接着采用分块相似性先验嵌入稀疏编码的方法实现对人脸图像的分类.实验结果表明,通过改进稀疏编码字典的鉴别能力,系统能更有效地抑制光照、表情、遮挡/伪装的影响,其识别的稳健性和鲁棒性得到了明显提升.
1
提出了利用小波变换(WT)、非负稀疏矩阵分解(NMFs)和Fisher线性判别(FLD)来进行人脸识别。用小波变换分解人脸图像,选择最低分辨率的子段,既能捕获到人脸的实质特征,又有效地降低了计算复杂性;非负稀疏矩阵分解能显示地控制分解稀疏度和发现人脸图像的局部化表征;Fisher线性判别能在低维子空间中形成良好的分类。实验结果表明,这种方法对光照变化、人脸表情和部分遮挡不敏感,具有良好的健壮性和较高的识别效率。
1
非正交多址接入(NOMA)可以通过对资源的非交使用来提高频谱利用率,增加用户连接数,有望成为5G的关键技术之一。考虑基站端配备多根天线,针对上行免调度SIMO-NOMA系统中活跃用户数量未知的情况,提出了一种基于压缩感知的稀疏度自适应匹配追踪硬融合算法(SAMP-HFA)。所提算法主要包括三部分:首先利用传统的SAMP算法估计基站端每根天线上的用户活动情况,接着融合这些检测到的用户活动信息获得一个公共的活跃用户集合,最后利用该集合估计活跃用户的传输数据。仿真结果表明,随着天线数目的增加,所提算法的误码率性能显著提高。
2023-04-05 15:36:00 365KB 压缩感知
1