多面体导体磁场积分方程阻抗矩阵的高效计算
2023-04-11 19:46:20 1.25MB 研究论文
1
该函数计算由给定导体几何形状感应的磁场 H。 几何形状由直导体(“电流棒”)表示。 这种数值技术的理论可以在 Hermann A. Haus 的“电磁场和能量”,第 322 页中找到。 由以色列理工学院 Yoash Levron 教授撰写,2014 年。 功能输入导体的形状用“电流棒”表示。 例如,方形导体由四根棍子表示。 FROM - 一组向量点,指示每个当前棒的开始位置。 FROM(i,:) 是一个原始向量 (x,y,z),表示 3-D 空间中的一个点。 单位为米 [m] TO - 与 FROM 相同。 指示每个当前棒的结束位置。 CUR - 代表每根棍子电流的列向量。 CUR(i) 是一个标量。 安培单位 [A] R - 观察点。 要计算磁场的矢量点阵列。 R(i,:) 是原始向量 (x,y,z),表示 3-D 空间中的一个点。 单位为米 [m]。 功能输出Hmat - 观测点的
2023-04-11 15:59:27 4KB matlab
1
基于三维有限元法对一台电力变压器进行了合理的建模,模型可自然给出绕组的电阻损耗.基于该模型模拟了内部磁场与油箱损耗的分布情况,并研究了放置磁屏蔽板后油箱的损耗变化.模拟结果与实测结果基本符合,说明建模正确.分析结果对研制节能降耗型电力变压器有指导作用.
2023-04-10 20:14:50 313KB 自然科学 论文
1
PLL 类估算器 本应用笔记中使用的估算器就是 AN1162 《交流感应电 机 (ACIM)的无传感器磁场定向控制 (FOC) 》(见 “ 参考文献 ”)中采用的估算器,只是在本文中用于 PMSM 电机而已。 估算器采用 PLL 结构。其工作原理基于反电动势 (BEMF)的 d 分量在稳态运行模式中必须等于零。图 6 给出了估算器的框图。 如图 6 中的闭环控制回路所示,对转子的估算转速 (ω Restim)进行积分,以获取估算角度,如公式 1 所示: 将 BEMF 的 q 分量除以电压常量 ΚΦ 得到估算转速 ω Restim,如公式 2 所示: 考虑公式 2 中给出的最初估算假设(BEMF 的 d 轴值在 稳态下为零),根据 BEMF q 轴值 Edf 的符号,使用 BEMF d 轴值 Edf 对 BEMF q 轴值 Edf 进行校正。经过公 式 3 显示的 Park 变换后,使用一阶滤波器对 BEMF d-q 分量值进行滤波。 采用固定的定子坐标系,公式 4 代表定子电路公式。 在公式 4 中,包含 α – β 的项通过经 Clarke 变换的三相 系统的对应测量值得到。以 Y 型(星型)连接的定子相 为例, LS 和 RS 分别代表每个相的定子电感和电阻。若 电机采用 Δ 连接, 则应计算等效的 Y 型连接相电阻和电 感,并在上述公式中使用。 图 7 表示估算器的参考电路模型。电机的 A、 B 和 C 端 连接到逆变器的输出端。电压 VA、 VB 和 VC 代表施加 给电机定子绕组的相电压。 VAB、 VBC 和 VCA 代表逆变 器桥臂间的线电压,相电流为 IA、 IB 和 IC。
2023-04-09 11:26:38 334KB FOC 无感 Microchip
1
本应用笔记着重于适用于电器的基于PMSM的无传感器FOC 控制, 这是因为该控制技术在电器的电机控制方面有着无可比拟的成本优势。 无传感器 FOC 技术也克服了在某些应用上的限制,即由于电机被淹或其线束放置位置的限制等问题,而无法部署位置或速度传感器。 由于PMSM使用了由转子上的永磁体所产生的恒定转子磁场,因此它尤其适用于电器产品。 此外,其定子磁场是由正弦分布的绕组产生的。 与感应电机相比, PMSM 在其尺寸上具有无可比拟的优势。 由于使用了无刷技术,这种电机的电噪音也比直流电机小。 矢量控制综述 间接矢量控制的过程总结如下: 1. 测量 3 相定子电流。 这些测量可得到 ia 和 ib 的 值 。 可通过以下公式计算出 Ic : i a + ib + ic = 0。 2. 将 3 相电流变换至 2 轴系统。 该变换将得到变量 i α和iβ,它们是由测得的ia和ib以及计算出的ic值 变换而来。从定子角度来看, iα 和 iβ 是相互正交 的时变电流值。 3. 按照控制环上一次迭代计算出的变换角,来旋转 2 轴系统使之与转子磁通对齐。 iα 和 iβ 变量经过 该变换可得到 Id 和 Iq。 Id 和 Iq 为变换到旋转坐标 系下的正交电流。 在稳态条件下, Id和Iq是常量。 4. 误差信号由 Id、 Iq 的实际值和各自的参考值进行 比较而获得。 • Id 的参考值控制转子磁通 • I q 的参考值控制电机的转矩输出 • 误差信号是到 PI 控制器的输入 • 控制器的输出为 Vd 和 Vq,即要施加到电机 上的电压矢量 5. 估算出新的变换角,其中 vα、 vβ、 iα 和 iβ 是输 入参数。 新的角度可告知 FOC 算法下一个电压 矢量在何处。 6. 通过使用新的角度,可将 PI 控制器的 Vd 和 Vq 输出值逆变到静止参考坐标系。 该计算将产生下 一个正交电压值 vα 和 vβ。 7. v α 和 vβ 值经过逆变换得到 3 相值 va、 vb 和 vc。 该 3 相电压值可用来计算新的 PWM 占空比值, 以生成所期望的电压矢量。 图 6 显示了变换、 PI 迭代、逆变换以及产生 PWM 的整个过程。
2023-03-28 19:30:52 502KB AN1078 Microchip
1
重、磁异常的解析延拓是勘探地球物理学中一个重要的研究课题。本文着重叙述数学物理方程定解问题的适定与不适定问题的概念、解析函数的解析延拓和拉普拉斯方程的柯西问题、位论的边值问题以及重、磁异常全空问延拓的问题。本文论证了全空间(除场源以外)的延拓实质上是两个问题,即位论的边值问题和拉普拉斯方程的柯西问题。前者是适定的定解问题,后者则是不适定的定解问题。文中还详细讨论了拉普拉斯方程柯西问题的提法及求解中应注意的问题。
2023-03-19 17:04:32 514KB 工程技术 论文
1
针对某种大牵引力AGV轮毂电机,设计了一种永磁无刷直流电机驱动器。在三相全桥逆变上采用更高频率的GaN开关管,通过提高开关频率以减少电机的损失和扭矩波动。控制电路以TMS320F28069芯片为基础,采用了一种FOC控制算法,详细介绍了磁场定向控制理论原理,并在此基础上设计了无刷直流电机无位置传感器系统,通过滑模观测器法来估算转子位置和转速,并对电机的驱动电路和采样电路进行了分析。本次设计的驱动器具有体积小、散热好、适用于高频的特点,能够很好的适用于大牵引力AGV小车。
1
摘要关键词:毕奥-萨伐尔定律;载流圆线圈;匀强磁场定量计算了载流线圈产生磁场的磁感应强度,用MATLAB进行可视化模拟,将相同的方法推广到两平行的同向载流线圈产
2023-03-15 16:30:20 2.73MB
1
matlab代码仿真虚拟场景 用于低场强下的低 SNR 仿真的 MATLAB 脚本 在某些假设下,可以从高场数据模拟低场 MRI 采集,并可以确定最小场强要求。 该软件包提供了一个用于模拟低场 MRI 采集的简单框架,可用于预测 MRI 技术所需的最小 B0 场强。 该框架对于评估去噪和约束重建技术以及将它们转换为更便宜的低场扫描仪的可能性特别有用。 (c) Weiyi Chen , Ziyue Wu , Krishna Nayak , 2016 年 5 月。 南加州大学 代码结构 主功能 低场基因 function [ k_low ] = lowfieldgen( inParam ) % LOWFIELDGEN simulates low field noise % See details inside the m-file 演示 我们建议通过运行以下 2 个演示来开始使用此软件包: 上呼吸道网格重建: demo_airway.m 此示例显示了模拟低场数据上的网格重建,基于使用 3T 黄金角径向 FLASH 采集的数据。 脂肪水分离: demo_fatwater.m 这个例子显示了模
2023-03-07 08:49:19 26.65MB 系统开源
1
MATLAB仿真,如何使用有限导线和有限电流在有限空间中产生近似均匀磁场
2023-03-02 10:37:02 7KB MATLAB 电磁场
1