介绍了作为支持向量机(SVM)理论基础的统计学习理论和SVM的原理,推导了SVM回归模型;本文采用最小二乘支持向量机(LSSVM)模型,根据浙江台州某地区的历史负荷数据和气象数据,分析影响预测的各种因素,总结了负荷变化的规律性,对历史负荷数据中的“异常数据”进行修正,对负荷预测中要考虑的相关因素进行了归一化处理。LSSVM中的两个参数对模型有很大影响,而目前依然是基于经验的办法解决。对此,本文采用粒子群优化算法对模型参数进行寻优,以测试集误差作为判决依据,实现模型参数的优化选择,使得预测精度有所提高。实际算例表明,本文的预测方法收敛性好、有较高的预测精度和较快的训练速度。
2021-10-14 21:49:59 327KB 负荷短期预测
1
提出了一种基于小波分析与BP神经网络的矿井工作面瓦斯浓度预测算法,综合利用了小波分析算法的信号去噪作用以及BP神经网络可以拟合任何非线性系统的能力,并采用Matlab软件实现了该算法在瓦斯浓度预测上的应用。试验结果证明,对于短期内的工作面瓦斯浓度预测,该算法具有较好的预测效果。
1
考虑相似时段聚类的风电功率短期预测算法.pdf
2021-08-19 09:22:50 946KB 聚类 算法 数据结构 参考文献
基于LSSVM优化组合的风速短期预测,周会友,滕婧,风速受地理环境等因素影响,具有很大的随机波动性,被认为是最难准确预测的参数之一。对风电场风速的准确预测,可有效缓解风速变
1
基于灰色辨识模型的风电功率短期预测,王子赟,纪志成,提出一种基于灰色理论和辨识模型的风电功率短期预测的方法。采用GM(2,1)灰色模型建立具有新陈代谢功能的GM(2,1)风速预测模型。将FIR-MA�
2021-07-05 11:10:21 600KB 首发论文
1
果蝇优化广义神经网络的风电功率短期预测
2021-07-05 08:47:44 471KB 研究论文
1
GRU-ARIMA时间序列预测 GRU和ARIMA模型用于时间序列预测,其中GRU可用于短期和长期预测。使用GRU和ARIMA模型进行时间序列预测,其中GRU可以进行短期预测和长期预测。
1
云计算资源负载短期预测是云计算平台实现资源高效管理和系统安全、稳定运行的重要前提和保障措施之一。为了其提高负载短期预测的预测精度,提出一种改进灰狼搜索算法优化支持向量机的短期云计算资源负载预测模型(EGWO-SVM)。首先介绍灰狼搜索算法(GWO)的基本原理;然后提出基于极值优化的改进GWO模型;最后根据最优参数建立短期资源负载预测模型,并通过仿真实验对EGWO-SVM的性能进行测试。实验结果表明,相对于参比模型,EGWO-SVM能更加准确地刻画云计算短期资源负载的复杂变化趋势,从而有效提升云计算资源负载短期预测的精度。
2021-05-23 17:35:26 1.05MB 论文研究
1
以matlab开发工具,将负荷参数和气象数据经过LSTM递归神经网络训练,预测了未来10天的符合参数,属于LSTM多步预测,最后与实际只进行了比较,得到了均方根和比较图
2021-04-14 16:08:11 20KB matlab 短期负荷预测 LSTM多步预测
1
受天气状况、辐照度、温度、湿度等气象因素的影响,光伏系统的输出具有很强的非线性和非平稳性的特点,光伏发电量预测精度较低。该文根据光伏系统的历史发电数据和实际气象数据,采用模糊识别与RBF神经网络相结合的方法,实现光伏系统发电量的短期预测。首先对影响预测结果的气象因素进行分析,然后按天气类型进行分类,对不同的天气类型分别建立模型进行训练,最后利用此模型预测未来的光伏系统发电量,并通过实验仿真验证。预测结果表明,该方法不但减少了模型所需样本数量而且提高了预测的精度,具有一定的科研价值。
1