直流微电网中,我们不能直接引入负载,需要一定的电力电子电路才能将相应的负载接入,它们等价于是在直流微电网中接入的设备。 本模型为直流负载DC/DC BUCK电路。
2023-02-13 13:06:43 40KB MATLAB DC/DC 直流微电网
1
matlab2022a仿真;直流微电网;MPPT;光伏;储能 matlab2022a仿真;直流微电网;MPPT;光伏;储能 matlab2022a仿真;直流微电网;MPPT;光伏;储能 matlab2022a仿真;直流微电网;MPPT;光伏;储能 matlab2022a仿真;直流微电网;MPPT;光伏;储能 matlab2022a仿真;直流微电网;MPPT;光伏;储能 matlab2022a仿真;直流微电网;MPPT;光伏;储能 matlab2022a仿真;直流微电网;MPPT;光伏;储能 matlab2022a仿真;直流微电网;MPPT;光伏;储能 matlab2022a仿真;直流微电网;MPPT;光伏;储能 matlab2022a仿真;直流微电网;MPPT;光伏;储能 matlab2022a仿真;直流微电网;MPPT;光伏;储能 matlab2022a仿真;直流微电网;MPPT;光伏;储能 matlab2022a仿真;直流微电网;MPPT;光伏;储能 matlab2022a仿真;直流微电网;MPPT;光伏;储能 matlab2022a仿真;直流微电网;MPPT;光伏;储能
2022-12-26 13:07:25 71KB matlab 光伏 MPPT 储能
1
实现不同控制下的直流配电网仿真,基于vsc的直流配电网仿真
1
Matlab2018b版本的仿真,排版整齐,容易理解,可以在这个基础上继续改进。
2022-04-25 20:04:59 44KB matlab 开发语言
归功于 ankith reddy。 直流微电网以 480v 运行。 来自120kV主电网的交流输入先降压到11kv,再降压到480v,再由转换器(整流器)转换为直流。 当转换器为逆变模式时,直流微电网输入到交流电网。 故障发生在 t=10 秒
2022-04-19 15:46:41 86KB matlab
1
直流微电网系统设计将包括 2 个 50W 光伏阵列作为电源连接到各自的太阳能充电控制器,该控制器使用脉宽调制控制降压转换器,同时提供一个 3 点电网,每个点都有一个直流负载,这些负载是可变负载是定制设计的带二极管的变阻器。
2021-12-07 22:30:22 93KB matlab
1
双母线结构直流微电网的主要控制目标是稳定各级母线电压、维持整体系统的功率平衡,传统的阻性下垂控制不能很好地协调这2个控制目标。提出一种基于离散分组一致性算法的双母线直流微电网自适应下垂控制策略。所提策略基于Java Agent开发框架(JADE)平台多代理系统,通过网内以及网间的互通协议,在弱通信网络条件下根据分组一致性协议使各级母线实现区域功率自治。搭建由JADE、MacSimJX、Simulink组成的混合仿真平台,仿真验证了所提控制策略的有效性。
1
呈现负阻尼特性的恒功率负荷与分布式电源接入变换器级联容易导致系统出现振荡,给直流微电网稳定运行带来隐患。通过建立带恒功率负荷变换器在平衡点的小信号模型,推导变换器占空比与母线电压的传递函数,并从理论上分析传统PI控制器不能提高系统稳定性的原因,进而提出一种提高直流微电网母线电压稳定性的新型控制策略。通过绘制闭环系统的根轨迹图,分析控制器各参数的变化对系统稳定性的影响。以两源两负荷的直流微电网为例,建立MATLAB / Simulink仿真模型,仿真结果表明孤岛和并网运行下采用所提控制策略均可以保证直流微电网稳定运行。
1
为了保障交直流混合微电网供电可靠性与运行稳定性,基于改进直流母线分层思想,提出了一种综合协同控制的能量管理策略。根据直流侧直流母线电压变化,分别设计了并网和孤岛工况下微电网内微源的协同控制策略,其为无需通信线的分散控制,协调对光伏电池、储能电池、交直流接口变流器、直流负荷、交流负荷与大电网之间的控制。所提策略保障了分布式微源发电的充分利用与计划重要负荷的持续稳定供电,优化了储能电池能量利用。分析了微电网内控制器设计与微源能量分配方法。设计搭建了交直流混合微电网实验平台,实验验证了该协同控制的能量管理策略的可行性与正确性。
1
为提高微电网的稳定性,提出一种集自适应观测技术、滑模控制方法、定频PWM技术于一体的新型定频PWM自适应滑模控制策略,可在不需要增加额外传感器/硬件电路的情况下实现对状态变量的快速跟踪和调节,便于直流微电网内微电源和负荷的扩展与即插即用,且简化了滤波器的设计难度。同时,采用非线性复合控制方法在恒功率负载突变的情况下实现对母线电压和系统稳定控制的目标。初始状态的合理选择、变切换面的设计,使得状态变量全程处于滑动模态,并且抖振现象得以减轻。在包含光伏电源、燃料电池、蓄电池、双向Buck/Boost变换器、恒功率负载与阻性负载的直流微电网仿真环境中,验证了所提控制方法的有效性。
1