行业分类-物理装置-一种抗遮挡的目标跟踪方法、装置及存储介质.zip
行业-电子政务-目标跟踪方法、装置、电子设备及存储介质.zip
行业-电子政务-目标跟踪方法、装置及电子设备.zip
行业分类-物理装置-基于相关滤波和自适应特征融合的多尺度目标跟踪方法.zip
筛选毫米波雷达数据,初步确定有效目标。首先对雷达数据进行了预处理,主要是对空信号、静止目标和无效目标进行了筛选和剔除,然后结合同车道有效目标的判断方法,对相邻车道的非危险目标进行了滤除,获取初选目标,最后通过生命周期检验方法进一步验证目标存在的有效性,并建立卡尔曼滤波模型对数据信息进行滤波处理,降低噪声的干扰。 基于机器视觉的前方车辆检测方法研究。本文采用 Haar-like 方法提取车辆特征,同时利用积分法加快对特征值的计算速度,基于这些特征值,通过结合Adaboost 算法迭代训练多个弱分类器并将其组合构建强分类器,最后将多个强分类器串联建立级联分类器。考虑到获取的车辆图像在时间和空间上的连续性,本文基于无迹卡尔曼滤波算法建立了车辆跟踪模块,增强系统对车辆目标轨迹的实时追踪。 建立多传感器融合模型。利用毫米波雷达坐标系、世界坐标系、摄像头 坐标系、图像坐标系和像素坐标系之间的空间位置转换关系,实现雷达和摄像头 的空间融合。针对毫米波雷达和摄像头采样频率不同的问题,本文采用多线程法 来实现传感器间的时间同步。本文基于扩展信息融合和无迹信息融合原理,建立 了一种改进的无迹信息融合算法,该算法能够消除更新方程中的测量信息,增强 对目标的估计精度,解决各传感器间的目标信息无法进行有效结合的问题。 对融合系统的仿真和实车验证。本文选用六自由度 QJ-4B1 动感型模拟驾驶仪对融合系统进行仿真测试,通过人机交互界面建立了虚拟的传感器、道路工况和背景环境,最大限度的还原实车试验。在实车试验中,完成了对传感器的安装和试验平台的搭建,并对实车试验场地以及人员进行了相应的安排。
2021-05-05 19:01:53 3.25MB 主动避撞 目标识别 毫米波雷达 摄像头
针对计算机视觉中目标跟踪的问题,提出基于卷积神经网络(CNN)提取深度特征并与边缘特征进行自适应融合的策略来实现视频目标的跟踪算法。卷积神经网络的低层网络可以获取目标的一部分空间结构、形状等特征;高层网络可以获得相对比较抽象的部分语义信息。将VGG16神经网络中第2个卷积层Conv1-2、第4个卷积层Conv2-2和最后一个卷积层Conv5-3提取的深度特征与边缘特征进行特征的自适应融合来实现视频目标跟踪。在OTB100数据集中对本文算法进行实验验证与分析,结果表明,本文算法能够对目标实现更加准确的定位。
2021-04-27 19:55:34 10.73MB 机器视觉 目标跟踪 边缘特征 卷积神经
1
http://blog.csdn.net/yang6464158/article/details/38942529 目标跟踪方法实现,通过模板匹配的方法进行跟踪 先用鼠标选择要跟踪的目标,再利用模板匹配的方法实现实时帧的跟踪 附源代码和测试视频以及更多视频的网站链接
2021-04-15 12:13:32 16.62MB 模板匹配 目标跟踪 OpenCV
1
目标跟踪
2021-04-11 10:51:40 472KB 目标跟踪
1
基于切向和法向加速度变结构多重模型的目标跟踪方法
2021-02-26 15:05:40 1.84MB 研究论文
1
近年来卷积神经网络框架被成功地应用到目标跟踪领域, 并取得了较为稳健的跟踪结果。基于此思想, 提出一种基于定位-分类-匹配模型的目标跟踪方法。首先, 在定位模型中, 利用前一帧的位置信息预测当前帧中的候选目标区域。然后, 采用已训练的深度特征对候选区域进行类间筛选, 选出N个次优目标区域。最后, 利用常规颜色特征对次优目标区域进行类内寻优匹配, 从而确定最终的跟踪目标。与此同时, 分别对定位、分类中的网络进行更新, 并对建立的匹配模型进行在线实时更新, 使得其对目标的描述更加准确。在OTB50和OTB100标准数据库上进行实验测试, 结果表明, 提出的跟踪方法在快速运动、相似物体干扰、复杂背景等条件下具有较好的跟踪稳健性。
2021-02-23 09:04:56 11.2MB 机器视觉 卷积神经 定位模型 类间筛选
1