如何为目标识别追踪项目mikel-brostrom/yolov8_tracking增加计数功能?
https://blog.csdn.net/Albert233333/article/details/129138164
代码的网址项目名:Real-time multi-object tracking and segmentation using Yolov8(1)它的识别和分割是YOLO8完成的。它的多目标追踪是由后面四种算法实现的(botsort,bytetrack,ocsort,strongsort)(2)它这个是实时的Real-time,识别、跟踪、分割的速度很快。
YOLOV8代码详细讲解的文章:https://blog.csdn.net/Albert233333/article/details/130044349
UAVDT是一个具有大规模的挑战性的无人机检测和跟踪基准(即10小时原始视频中约8万帧的代表性帧),用于3项重要的基本任务,即目标检测(DET)、单目标跟踪(SOT)和多目标跟踪(MOT)。
数据集由无人机在各种复杂场景中捕获。本基准中关注的对象是车辆。使用边界框和一些有用的属性(例如,车辆类别和遮挡)对帧进行手动注释。
UAVDT基准由100个视频序列组成,这些视频序列是从城市地区多个地点的UAV平台拍摄的超过10小时的视频中选择的,代表各种常见场景,包括广场、主干道、收费站、高速公路、交叉口和T形交叉口。视频以每秒30帧(fps)的速度录制,JPEG图像分辨率为1080×540像素。
该数据集包含的是原始图片,不包括注释
参考:
D. Du, Y. Qi, H.g Yu, Y. Yang, K. Duan, G. Li, W.g Zhang, Q. Huang, Q. Tian, " The Unmanned Aerial Vehicle Benchmark: