目标边界约束下基于自适应形态学特征轮廓的高分辨率遥感影像建筑物提取
2025-12-01 17:16:22 768KB 研究论文
1
数据集介绍: 本文件介绍了一个用于目标检测的铁轨缺陷检测数据集,该数据集遵循Pascal VOC格式和YOLO格式,包含4020张标注图片,以及对应的标注信息。数据集共分为4个类别,分别是“corrugation”(波纹)、“spalling”(剥落)、“squat”(凹坑)和“wheel_burn”(轮轨磨痕)。每个图片都有相应的.xml文件和.txt文件,用于VOC和YOLO两种格式的目标定位和分类标注。 数据集格式与组成: 数据集包含4020张.jpg格式的图片文件,每张图片都有一个对应的标注文件。其中.xml文件用于Pascal VOC格式的标注,包含了图片中目标的位置和类别信息。而.txt文件则遵循YOLO格式,用于YOLO算法在训练时的图像标注数据处理,同样包含了图像中缺陷目标的坐标信息和类别。 标注类别与数量: 标注数据集一共包含四个类别,每个类别都有相应的标注框数。具体来说,"corrugation"类别标注框数为1452个,"spalling"类别为2208个,"squat"类别为2949个,"wheel_burn"类别为546个。总计标注框数达到了7155个,这意味着有些图像中可能包含多个缺陷目标。 标注工具与规则: 该数据集的标注工作采用了labelImg这一流行的图像标注工具来完成,适用于机器学习和计算机视觉项目。标注时,对各类铁轨缺陷的目标用矩形框进行标注,并在矩形框内填写对应的类别名称,确保每个缺陷都有明确的标记和分类。 数据增强与使用声明: 数据集说明中特别提到,大约有3/4的图片是通过数据增强手段获得的,这可能包括旋转、缩放、翻转等方式对原始图片进行变换得到的新图片。数据增强是提高模型泛化能力的常用方法。此外,数据集提供者声明本数据集不对训练模型或权重文件的精度做任何保证。因此,使用者在使用数据集进行模型训练时应谨慎,并自行验证模型效果。 图片总览与标注示例: 尽管没有提供具体的图片和标注示例,但可以合理推测,数据集中包含了铁轨在各种环境和不同光照条件下的照片。此外,还应该提供了一些带有标注框和标签的图片示例,以便使用者了解数据集的质量和标注的精确度,这对于模型训练来说是非常有帮助的。 总结而言,本数据集为铁轨缺陷检测提供了丰富的标注图片资源,遵循了常用的VOC和YOLO标注格式,并详细说明了类别、数量和标注规则。数据集经过了一定的数据增强处理,但使用时需要注意模型性能的独立验证。
2025-11-30 13:27:23 4.5MB 数据集
1
一共包括1080张车内带有安全带的人员驾驶图像,同时包括对应的1080个安全带目标检测的位置标记文件。可以用于驾驶员监控的安全带的目标检测训练。
2025-11-28 11:12:32 82.73MB 目标检测 安全带检测
1
yolo安全帽检测数据集是一种用于训练和测试yolo模型的数据集,旨在识别和检测图像中的安全帽行为,戴安全帽和未戴安全帽。该数据集包含了6000张以上的图像样本,这些样本涵盖了各种安全帽场景,例如室内、室外、人群中等; 戴安全帽和未戴安全帽识别数据集超高识别率,支持YOLOV5、支持YOLOV8格式的标注,近6000张以上戴安全帽和未戴安全帽场景下的安全帽图片; 文件分images和labels,images为图像,labels为标注好的txt文件,个人用labelImg手动标注,目前个人在yolov5和yolov8上跑过,mAP@0.5在0.9以上,懂行的直接下载直接用。
2025-11-27 10:14:23 900.22MB 数据集 目标检测 计算机视觉 yolo
1
内容概要:本文介绍了人员睡岗玩手机检测数据集,该数据集包含3853张图片,采用Pascal VOC和YOLO两种格式进行标注,每张图片都有对应的xml文件(VOC格式)和txt文件(YOLO格式)。数据集共分为三个类别:“normal”、“play”、“sleep”,分别表示正常状态、玩手机和睡岗,对应的标注框数为2761、736和847,总计4344个框。所有图片和标注文件均使用labelImg工具完成,标注方式是对每个类别绘制矩形框。; 适合人群:计算机视觉领域研究人员、算法工程师及相关从业者。; 使用场景及目标:①用于训练和测试人员行为检测模型,特别是针对睡岗和玩手机行为的识别;②评估不同算法在该特定场景下的性能表现。; 其他说明:数据集仅提供准确合理的标注,不对基于此数据集训练出的模型或权重文件的精度做出保证。
2025-11-26 12:31:37 445KB YOLO 图像标注 数据集 目标检测
1
本文介绍了如何结合双目视觉技术和YOLO目标检测算法实现3D测量。双目技术通过两个相机模拟人眼视觉,计算物体深度信息,适用于三维重建和距离测量。YOLO算法以其快速高效的特点,适用于实时目标检测。文章详细阐述了双目标定、立体校正、立体匹配和视差计算的原理及实现步骤,并提供了相关代码示例。通过将双目技术与YOLO结合,成功实现了3D目标检测和体积测量,展示了较高的精度,但也指出周围环境需避免杂物干扰。 在本文中,双目视觉技术和YOLO目标检测算法被结合起来进行3D测量。双目视觉是一种利用两个摄像机模拟人类的双眼视觉的算法,可以计算物体的深度信息,非常适合进行三维重建和距离测量。通过双目技术,我们可以从两个不同角度拍摄同一个物体,然后通过计算两个图像之间的视差(即同一物体在两个图像中的相对位置差异),来推算出物体的深度信息。这种技术在机器视觉、自动驾驶汽车、机器人导航等领域有着广泛的应用。 YOLO(You Only Look Once)是一种实时的目标检测算法。它的特点是速度快,效率高,能够实时地在图像中检测和定位多个物体。YOLO将目标检测问题视为一个回归问题,将图像划分为一个个格子,每个格子预测中心点落在该格子内的边界框和类别概率。这种方法极大地提高了目标检测的效率。 文章详细介绍了如何将双目视觉技术和YOLO算法结合起来进行3D测量。需要进行双目标定,即确定两个相机的内部参数和外部参数。然后进行立体校正,使得两个相机的成像平面共面,并且两个相机的主光轴平行。接着进行立体匹配,找到左图和右图之间的对应点。最后进行视差计算,计算出对应点在两个图像中的相对位置差异,即视差。通过视差和双目标定的结果,可以计算出物体的深度信息,从而实现3D测量。 文章还提供了相关的代码示例,帮助读者更好地理解和实现双目视觉和YOLO的3D测量。通过实际的案例,我们可以看到,将双目视觉技术和YOLO结合起来,可以成功实现3D目标检测和体积测量,展示了较高的精度。但是,这种方法也有其局限性,比如周围的环境需要尽量避免杂物干扰,否则可能会影响测量的精度。 双目视觉技术和YOLO目标检测算法的结合,为3D测量提供了一种新的方法。这种技术具有速度快、精度高的特点,可以在许多领域得到应用。但是,如何提高测量的精度,避免周围环境的干扰,还需要进一步的研究和改进。
2025-11-25 15:42:45 75KB 计算机视觉 3D测量 目标检测
1
太阳能光伏板积灰灰尘检测数据集是专门为研究和开发目标检测算法设计的,特别是在检测太阳能光伏板上积灰和灰尘的场景。该数据集采用了Pascal VOC格式和YOLO格式两种标注格式,不包含图片分割路径的txt文件,而是包括jpg格式的图片以及相应的VOC格式xml标注文件和YOLO格式的txt标注文件。VOC格式广泛应用于计算机视觉领域,用于图片标注,而YOLO格式则是针对一种名为YOLO(You Only Look Once)的目标检测算法的特定格式。 整个数据集包含1463张图片,每张图片都进行了详细的标注。标注的总数也达到了1463,与图片数量相同,保证了数据集的完备性。标注的对象包括单一的类别,即“Dirt”,也就是积灰和灰尘。在这些标注中,“Dirt”类别的标注框数总计为6822个,这反映了数据集在目标检测上的细致程度和多样性。每个“Dirt”类别的标注都以矩形框的形式呈现,这些矩形框精确地标出了图片中积灰和灰尘的位置和范围。 标注工具选用的是labelImg,这是一个常用于目标检测数据集制作的开源标注软件,支持生成VOC格式的xml文件。此外,本数据集在标注过程中遵循了一定的规则,即对每一块积灰或灰尘区域都进行矩形框标注。值得注意的是,数据集虽然提供了大量的标注信息,但编辑团队在说明中特别提到,数据集本身不保证任何由此训练出来的模型或权重文件的精度,这意味着数据集仅提供准确合理的标注图片,而模型的训练效果还需进一步的验证和调整。 图片重复度很高是这个数据集的一个特点,这在实际使用时需要用户特别注意。用户可能需要根据自己的需求进行图片的筛选或进一步的图像处理,以避免在训练数据集中出现过多重复图片,从而影响模型学习的有效性。数据集提供的图片示例和标注示例能够帮助用户理解标注的准确性和规范性,有助于模型开发人员进行算法的调试和优化。 由于本数据集旨在检测光伏板上的积灰和灰尘,对于光伏能源行业具有重要意义。准确地检测出这些因素能够及时对光伏板进行清洁维护,保障光伏系统的效率和能源产出。因此,这个数据集对于研究光伏板自动检测技术、提高光伏板运维效率以及减少人力成本等方面都有潜在的应用价值。
2025-11-24 21:27:37 3.64MB 数据集
1
CSDN Matlab武动乾坤上传的资料均有对应的代码,代码均可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-11-24 16:21:19 14KB matlab
1
随着人工智能技术的快速发展,计算机视觉领域的研究与应用也在不断拓展和深化。其中,目标检测作为计算机视觉的核心任务之一,在各个行业中扮演着越来越重要的角色。特别是在军事领域,目标检测技术可以应用于军事车辆的识别、跟踪以及分析等,这对于提高军事侦察能力和快速反应能力具有重要意义。因此,针对军事车辆的目标检测数据集就显得尤为关键。 《深读CV 第72期》发布的“Military Dataset: 军事车辆目标检测数据集”正是为了满足这一需求。该数据集是专门针对军事车辆进行目标检测而设计的,旨在为研究者提供一个高质量的训练和测试平台,帮助他们开发更为准确和高效的检测算法。通过这个数据集,研究者可以更深入地分析和理解军事车辆的特征,从而优化算法在实际应用中的表现。 该数据集包含了大量经过精心标注的军事车辆图片,这些图片涵盖了多种不同类型的军事车辆,如坦克、装甲车、军用卡车等,其应用场景也涵盖了战场、训练场以及城市和乡村等多种复杂环境。图片的标注工作严格遵循目标检测的标准流程,详细记录了每辆车的位置、类别以及必要的属性信息,确保了数据集的质量和实用性。 使用这样的数据集,研究者不仅可以针对军事车辆的外观特征进行深度学习和模式识别,还能够探索如何在不同的环境下,如夜间、恶劣天气或伪装条件下,进行有效的目标检测。此外,该数据集还可用于开发新的算法,提高检测的准确性、速度和鲁棒性,尤其是在对抗电子干扰和物理遮挡等复杂情况时。 除了上述功能,这一数据集还能够促进人工智能技术在军事领域的跨学科合作。通过公开发布数据集,研究者、开发者和军事专家可以共同参与到数据集的完善、算法的设计和应用场景的探索中来,从而加速军事人工智能技术的创新和应用。 数据集的多样性和实用性使其成为研究目标检测技术的重要工具。它不仅提供了足够的样本量来支持深度学习模型的训练,还具有足够的多样性以适应不同的实际应用需求。这为人工智能研究者和工程师提供了一个宝贵的资源,有助于他们开发出更为先进的军事车辆检测系统。 随着人工智能在军事应用中的不断深入,如何确保技术的安全性和道德性也是必须考虑的问题。数据集的开发和应用应当遵循相关的法律法规和伦理标准,确保技术的进步不会带来不可控的风险。随着技术的不断发展,我们期待有更多高质量的数据集问世,为人工智能技术在军事领域的健康发展做出贡献。
2025-11-24 13:50:07 22.4MB 数据集
1
这是一个基于YOLOv8模型的视频目标检测项目,能够实时处理视频流,识别视频中的多个对象,并在视频帧上标注出检测结果。 下载资源后,详细的使用说明可以参考我CSDN的一篇文章:https://blog.csdn.net/qq_53773901/article/details/145784864?fromshare=blogdetail&sharetype=blogdetail&sharerId=145784864&sharerefer=PC&sharesource=qq_53773901&sharefrom=from_link
2025-11-23 17:00:35 141.68MB yolo Python
1