TMC5240步进电机驱动芯片电路原理图, 可以参考设计
2025-09-22 10:19:06 145KB 电路原理图
1
光伏并网逆变器的设计方案,涵盖了硬件和软件两个方面。硬件部分包括光伏电池板、滤波电路和逆变桥,确保稳定的电力供应和高效的电能转换。软件部分采用DSP作为主控制器,结合矢量控制和下垂控制的环流抑制策略,有效解决逆变器并联运行时的环流问题。同时,文中提供了MATLAB电路仿真文件,帮助验证和优化设计方案。最终,通过方案、仿真和代码的有机结合,实现了光伏并网逆变器的高效、稳定运行。 适合人群:从事光伏并网逆变器设计、开发和研究的技术人员,尤其是对MATLAB仿真和DSP编程有一定基础的专业人士。 使用场景及目标:适用于需要设计高效、稳定光伏并网逆变器的研究机构和技术公司。目标是通过优化设计方案,提升系统的稳定性和效率,推动可再生能源的应用和发展。 其他说明:本文不仅提供理论指导,还附赠了MATLAB电路文件和DSP程序代码,方便读者直接应用于实际项目中。
2025-09-21 11:30:48 4.39MB
1
SI4432介绍: Si4432是高度集成度单芯片无线ISM收发器件。其包括了发射机、接收机和射频收发器,让设计工程师可以有选择的设计利用里面的无线部分。Si4432提供了先进的无线功能,包括连续频率范围从240到930MHz和可调输出功率高达+20dBm。Si4432的高度集成降低了BOM,同时简化了整体设计。极低的接收灵敏度(-118dBm),加上业界领先的+20dBm输出功率,保证传输范围和穿透能力。内置天线多样化和支持调频。 典型应用连接示意图: 附件内容总体包括两部分: 官方提供的官方SI4432无线模块设计资料,包括SI4432BI电路+PCB源文件,用Mentor Graphics(PADS)软件打开,以及SI4432BI demo程序; 某网友本人对SI4432 B1版的设计,功率19.27dBm,配用10ppm的晶振,频率稳定性比较好,频率一致性很好。分享的资料包括SI4432 B1版电路、UTC-4432B1开发指南、si4432 程序等 仿真测试截图如下: SI4432 B1版电路截图: 官方UTC-Si4432B1无线模块电路截图: 官方SI4432B1版demo程序截图:
2025-09-18 16:22:17 7.83MB si4432电路 si4432 射频收发器
1
基于TSMC.18工艺的低 dropout (LDO) 电路与低压差线性稳压器的设计,重点探讨了其内部带隙基准模块(Bandgap Reference)的设计细节以及温度补偿机制。文中不仅展示了具体的 Verilog-A 和 Verilog-AMS 编程实例,还提供了误差放大器优化方法、过温保护模块的实现方式,并通过 Cadence 平台进行了全面的仿真验证。此外,文章还分享了一些实用的调试技巧,如通过增加补偿电阻来提高相位裕度,确保系统稳定性和可靠性。 适合人群:从事模拟集成电路设计的专业人士,尤其是对 LDO 电路设计感兴趣的工程师和技术研究人员。 使用场景及目标:适用于需要深入了解 LDO 电路设计原理、掌握 Cadence 仿真工具使用方法的研究人员和工程师。目标是帮助读者理解 LDO 电路的关键组件和设计要点,提升实际项目中的设计能力。 其他说明:文章提供的代码片段和仿真案例有助于读者快速上手实践,同时强调了理论与实际操作相结合的重要性。
2025-09-18 10:10:02 2.29MB
1
YT8521S硬件电路设计参考图中包括WX1860AL4芯片部分原理图、YT8521功能配置和电压配置。复位信号由板卡上的CLPD控制,也可以设计一个RC电路控制,复位信号上拉建议选择3.3V电压。SERDES接口应连接至光笼子,与SGMII不同,注意不要混淆,如果是SGMII需要修改YT8521S功能配置。硬件电路经过实际生产测试,可放心使用。 裕太微电子的YT8521S是一款适用于RGMII(Reduced Gigabit Media Independent Interface)转SERDES(Serializer/Deserializer)接口的PHY(物理层)芯片,其硬件电路设计参考图中包含了与WX1860AL4芯片的连接以及详细的功能和电压配置说明。本设计参考图是基于YT8521S硬件电路设计的,该设计已经过生产测试,可提供给工程师可靠的参考。 复位信号的控制是电路设计中的重要一环。在参考图中,复位信号的控制既可以由板卡上的CLPD(Complex Programmable Logic Device)来控制,也可以通过设计RC电路(电阻-电容电路)来实现。需要注意的是,复位信号上拉时,建议选用3.3V的电压,以确保稳定性。 在硬件设计中,SERDES接口应当连接至光笼子,这与SGMII(Serial Gigabit Media Independent Interface)接口不同。因此,在设计时务必区分清楚两种接口,否则可能需要修改YT8521S的功能配置,以确保正确的数据传输速率和通信协议。 电路设计参考图上还标注了YT8521S芯片的功能配置和电压配置。功能配置主要关注芯片的操作模式、电源管理、信号传输速率等关键参数,而电压配置则涵盖了芯片运行所需的各个电压等级,这对于确保芯片稳定工作至关重要。例如,在参考图中可能会列出VCC_3V3,表明某些芯片引脚需要3.3V的供电。 参考图上还包含了一些电路设计中常用的元件标识和参数,如电容、电阻等。例如,图中可能会标明具体的电容容量,如4.7uF、100nF等,并指出这些元件的容差和额定电压,以帮助设计者选择合适的电子元件。 在实际的硬件电路设计中,通常还会涉及到电源管理电路设计,确保整个系统在不同工作状态下的电源供应问题。此外,电路板的设计还需要考虑信号完整性和电磁兼容性,以减少信号干扰和电磁辐射。 参考图还可能包括了布局和布线的一些要求和建议,这在高速电路设计中尤为重要。由于RGMII和SERDES接口都是高速通信接口,所以布线的精确度和信号传输的路径会直接影响到数据传输的稳定性。在设计时应当考虑到信号的传输延迟、回流路径等因素,以优化电路板性能。 YT8521S硬件电路设计参考图提供了从芯片连接、功能电压配置到元件选型等多方面的详细信息。这不仅为电路设计工程师提供了参考,而且能够帮助他们快速理解和应用相关的硬件设计技术,从而提升设计效率,减少设计错误,保证最终产品性能的稳定性。
2025-09-17 19:25:22 182KB PHY芯片 RGMII 网络接口 硬件设计
1
RN8209D电路设计参考原理图
2025-09-16 09:21:39 280KB RN8209D 电能计量
1
在讨论电子电路时,集总电路和分布电路是两类基本的电路模型,它们在分析和设计电路时具有不同的方法论和应用场景。了解它们之间的区别对于深入理解电路的物理特性和性能至关重要。 集总电路(或称集中参数电路)是一种传统的电路分析方法,在这种模型中,电路元件如电阻(R)、电容(C)和电感(L)被视为离散的单元,这些参数是集中的,即它们可以在电路的特定节点上明确表示。在集总电路分析中,电路元件之间的距离相对于信号波长可以忽略不计,所以可以认为电路元件间的连接是瞬时的,即不存在传输延迟。在集总电路中,导线仅用于流通电流,电磁波的传播特性不需要考虑,电路的电压和电流仅是时间的函数,而与空间坐标无关。这种分析方法适用于低频电路,如常规的模拟电路、数字电路等。 另一方面,分布电路(或称分布参数电路)则是在电路传输线或高频电路中更为适用的模型。当电路的长度接近或大于电磁波的一个波长时(传输线的长度l≈λ),就不能再忽略电磁波沿传输线传播时的滞后效应,即电磁波的传播速度有限,不能视为瞬时。在分布电路中,传输线的物理属性(如电阻、电感、电容和电导)在整个传输线上处处存在,并且随空间坐标变化。这意味着电压和电流不仅是时间的函数,也是空间坐标的函数。因此,分布电路分析需要使用到场论和波动方程来解决电压和电流沿传输线的分布情况。这种模型在高频电路、微波电路以及天线设计等领域中非常重要。 区分集总电路和分布电路的关键因素包括: 1. 电路尺寸与信号波长的关系:在信号波长的1/10或更小范围内,通常可以使用集总电路分析;超过这个范围,必须使用分布电路分析。 2. 电路元件的属性:集总电路中,元件属性集中在特定点;而在分布电路中,元件属性是连续分布在整个传输线上。 3. 电磁波传播的影响:在集总电路分析中不考虑电磁波传播特性,而在分布电路分析中,则必须考虑波的传播延迟和反射等问题。 4. 电路分析方法:集总电路使用的是电路理论,比如基尔霍夫电压定律和基尔霍夫电流定律;而分布电路则需要应用到更高级的场论和波动理论。 在实际应用中,工程师需要根据电路的工作频率、电路尺寸及信号的波长来确定适用的电路模型。在低频或小型电路中,可以使用集总电路模型来简化分析和设计过程;而在高频和长距离传输线中,必须采用分布电路模型以确保电路的性能符合设计要求。 集总电路和分布电路的概念在电子技术基础课程中占据重要位置,是理解复杂电路行为和进行精确设计的基础。通过深入学习这两种模型,电子工程师可以更好地掌握电路的工作原理,并能够预测电路在不同条件下的性能表现,从而优化电路设计,提高电路的稳定性和效率。
2025-09-15 21:23:30 47KB 集总电路 分布电路
1
清华大学出版社-模拟集成电路设计精粹桑森版课件PPT
2025-09-15 20:03:06 62.5MB
1
升压电路(也称为升压转换器或Boost转换器)和降压电路(又名降压转换器或Buck转换器)是电源设计中常见的两种基本型的DC-DC转换器。它们被广泛用于电子设备中,以将一个输入电压转换为不同的输出电压。升压电路能够将较低的输入电压提升至一个更高的稳定输出电压,而降压电路则相反,它将较高的输入电压降低至一个较低的稳定输出电压。两者的设计和计算都遵循一系列电路公式和算法,这些公式可以帮助设计师进行精确的设计计算,以满足不同电子系统的需求。 德州仪器(Texas Instruments,简称TI)是全球知名的半导体公司,其数据手册(datasheet)详细列出了旗下产品的技术规格和性能参数,是电子工程师设计电路时的重要参考资料。在升压和降压电路设计中,德州仪器的数据手册提供了关键的参数信息,如效率、开关频率、输入输出电压范围、最大输出电流等,这些参数对于设计合适的电源电路至关重要。 升压电路的自计算表格通常包含了多个参数输入,如输入电压、期望的输出电压、负载电流、电感值、开关频率、二极管和晶体管的额定值等。通过这些参数,设计者可以利用公式来计算关键元件的规格,确保转换器在不同负载条件下都能稳定工作。 降压电路的自计算表格同样需要输入类似的一系列参数。通过输入这些参数,设计者可以使用一系列公式来确定必要的组件规格,包括电感器的大小、电容器的容值、MOSFET的开关能力等。这些参数直接关系到电路的稳定性和效率。 自计算表格中涉及的公式通常会涉及到几个关键的电路参数的计算,例如: 1. 电感器的选择:需要根据负载电流、开关频率、允许的纹波电流以及期望的电感器电流纹波来计算所需的最小电感值。 2. 输出电容的选择:需要根据负载电流、开关频率、输出电压纹波和所需的最小电容值来确定电容规格。 3. 功率MOSFET的选择:根据最大电流、电压降、开关频率、效率以及热设计要求来计算所需的MOSFET功率级。 这些计算在设计过程中是不可或缺的,因为它们确保了转换器能够满足系统的需求,同时保持在安全的工作区域内,避免过热和组件损坏。 实际设计升压或降压电路时,工程师们还需要考虑额外因素,比如电源的瞬态响应,以及如何在不同的工作条件下保证电路的稳定性和性能。此外,系统级的考量如电磁兼容(EMC)、电路板布局、热管理等因素也对电路设计有着重要影响。 升压电路和降压电路的自计算表格及公式是电源设计领域的重要工具,它们能够帮助工程师快速准确地设计出满足各种性能要求的电源转换器。通过德州仪器等知名半导体厂商提供的数据手册和电路公式表达式,设计师们可以进一步确保他们的设计既符合标准要求,又能在实际应用中表现出色。
2025-09-15 19:57:29 775KB 电压计算
1
(周绍敏版)电工基础电子教案,教师教学时使用的教学PPT文档,简单直流电路
2025-09-15 18:12:45 1.4MB
1