遗传算法 (GA) 和布谷鸟搜索优化 (CSO) 的组合,用于分类精度最大化中的特征选择。 我没有使用 Levy 飞行,而是使用 GA 品种和变异进行布谷鸟更新。 我在代码中使用了朴素贝叶斯分类,但您可以将其替换为任何其他分类器。
2023-12-25 10:25:14 129KB matlab
1
对当前学习任务有价值的属性称为是“相关特征”,没有价值的属性称为是“无关特征”,从给定的特征集中选择出相关特征子集的过程,就称为是“特征选择”。其中还有一种特征称为是“冗余特征”,这些特征指的是可以从其他特征中推演出来的特征。
2023-06-21 15:28:42 45KB 机器学习
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真
2023-04-27 21:57:39 854KB matlab
1
二进制粒子群优化算法主代码, 其中bpso_project函数为特征子集评价函数, 对接自己的数据集与评价函数即可使用。
1
针对神经性疾病难以确诊的问题,提出了一种基于图的特征选择方法,过滤掉不相干的特征,从而方便并且准确地对疾病患者进行诊断。算法首先基于先验知识定义了两种基本关系(特征关系和样本关系);然后将这两种关系嵌入到一个由最小二次损失函数和l2 -范数正则化因子组成的多任务学习框架中进行特征选择;最后,将约简得到的降维矩阵送入支持向量机(SVM)中对阿兹海默症患者进行确诊。通过对Alzheimer’s disease neuroimaging initiative(ANDI)的研究数据集进行实验得知,提出算法的分类效果均优于一般常用分类算法,如K最近邻法(KNN)、支持向量机(SVM)等。提出的算法通过考虑特征选择和引入两种数据的内在关系,有效提高了阿兹海默疾病诊断的正确率。
2023-04-03 21:51:57 933KB 阿兹海默病诊断 特征选择 流型学习
1
特征选择算法能够更好地提高入侵检测系统的检测速度和检测效果,消除冗余数据并减轻噪音特征.结合特征选择算法的优势,提出一种基于主成分分析(PCA)与决策树(C4.5)的入侵检测方法,进而构建出轻量级的入侵检测系统.通过在KDD1999数据集上对该方法进行详细的实验验证,证明该方法一方面确保系统有较高的检测率与较低误报率,另一方面能够比较显著地提高系统的训练时间与测试时间.同时,通过比较实验发现此方法在训练时间、测试时间、检测率、误报率上的效果也优于GA-SVM方法.
1
此工具箱提供二进制原子搜索优化 (BASO) < Main> 举例说明了 BASO 如何使用基准数据集解决特征选择问题。 ****************************************************** ****************************************************** **********************************
2023-03-07 14:24:33 122KB matlab
1
特征降维能够有效地提高机器学习的效率,特征子集的搜索过程以及特征评价标准是特征降维的两个 核心问题 。综述国际上关于特征降维的研究成果 ,总结并提出了较完备的特征降维模型定义 ; 通过列举解决特 征降维上重要问题的各种方案来比较各种算法的特点以及优劣 ,并讨论了该方向上尚未解决的问题和发展 趋势。
1
特征选择(特征子集选择)问题是各个领域中重要的预处理阶段之一。 在真实的数据集中,存在许多无用的不相关的、误导性的和冗余的特征。 主要特征可以通过特征选择技术来提取。 特征选择属于NP-hard问题; 因此,元启发式算法可用于解决该问题。 引入了一种新的二元 ABC,称为二元多邻域人工蜂群(BMNABC),以增强 ABC 阶段的探索和开发能力。 BMNABC 在第一和第二阶段应用具有新概率函数的近邻和远邻信息。 在第三阶段对那些在前几个阶段没有改进的解决方案进行了比标准 ABC 更有意识的搜索。 该算法可以与包装方法相结合以达到最佳效果。
2023-01-04 19:04:00 1.52MB matlab
1