3 SW-特征学习讲义.pdf
2021-06-16 13:17:58 4.69MB SW
1
采用Python编写的堆叠自编码器(SDAE),可用于特征学习、模式分类等场景
2021-04-25 21:01:41 20KB 堆叠自编码器 SDAE Python 特征学习
1
深度神经网络中的多目标稀疏学习模型,刘嘉,公茂果,深度神经网络是一种具有复杂结构和较深层次的神经网络模型,其强大的数据表示和建模能力使其在各类应用中发挥了巨大的作用.稀疏理�
1
与传统的基于单模式的方法相比,它在诊断和预后阿尔茨海默氏病(AD)以及其前驱阶段(即轻度认知障碍(MCI))方面显示出巨大的优势。 然而,据我们所知,大多数现有方法都集中于挖掘同一主题的多种模式之间的关系,而忽略了不同主题之间的潜在有用关系。 因此,在本文中,我们将通过全面研究模态与主题之间的关系,为AD / MCI的多模态分类提出一种新颖的学习方法。 具体来说,我们提出的方法包括两个后续组件,即标签对齐的多任务特征选择和多模式分类。 在第一步中,将从多种模态中学习的特征选择视为不同的学习任务,并使用组稀疏性正则化器共同选择相关特征的子集。 此外,为了利用标记对象之间的区别信息,在标准多任务特征选择的目标函数中添加了一个新的标签对齐正则化术语,其中标签对齐意味着所有具有相同类别标签的多模态对象应在距离上更近。新的功能减少的空间。 第二步,采用多核支持向量机(SVM)融合多模态数据中的选定特征,以进行最终分类。 为了验证我们的方法中,我们执行在阿尔茨海默病的神经影像学倡议(ADNI)数据库使用基线MRI和FDG-PET成像数据的实验。 实验结果证明我们提出的方法与几种用于AD / MCI
2021-03-09 19:05:26 1.51MB Alzheimer’sdisease; Mild cognitive impairment;
1
多粒度深度特征学习可实现强大的行人检测
2021-03-08 11:05:44 3.35MB 研究论文
1