这是一个鼠标连器的工具软件,可以模拟鼠标搜索操作,如击、双击、输入文本、回车键等操作,可以用于Temu抢库容、抢仓库等场景
2024-11-20 17:32:36 32.45MB 鼠标连点器 鼠标点击器
1
云技术在现代计算机视觉和机器人领域中扮演着至关重要的角色,它允许设备理解周围环境的空间结构。本项目提供了一种使用C++实现的云获取方案,特别针对深度相机,如Intel RealSense系列。通过这个压缩包,我们可以获得完整的源代码以及所需的SDK安装包,便于开发者快速理解和实现云数据的采集与处理。 1. **云获取**: 云是三维空间中一系列离散的集合,这些代表了环境的几何信息。在本项目中,使用C++编程语言,开发者可以学习如何从深度相机获取并处理云数据。云数据通常包含每个的三维坐标(x, y, z)以及可能的其他属性,如颜色信息。 2. **深度相机**: 深度相机,如Intel RealSense,通过同时发射红外光和接收反射光来计算物体的距离,从而生成深度信息。这种技术基于时间飞行(Time-of-Flight)或结构光等原理。Intel RealSense SDK提供了接口和工具,使开发人员能够轻松集成深度相机功能到他们的应用程序中。 3. **C++编程**: C++是一种强大的系统级编程语言,常用于开发高性能的应用程序,包括实时的图像处理和计算机视觉任务。在这个项目中,C++被用来编写获取和处理云的代码,展示了如何利用面向对象的特性来构建高效且可维护的代码结构。 4. **SDK安装包**: "Intel.RealSense.SDK-WIN10-2.53.1.4623.exe"是Intel RealSense SDK的Windows 10版本,包含了库、头文件、示例代码和其他必要的组件。安装后,开发者可以访问到各种API,用于控制相机、捕获图像、解析深度数据等。 5. **代码文件解析**: - **获取彩色图和深度图.cpp**:这个文件展示了如何同时获取和处理来自深度相机的彩色图像和深度图像。彩色图像提供了环境的颜色信息,而深度图像则提供了距离信息。 - **获取云.cpp**:此文件包含将深度图像转换为云的算法。通常,这涉及到对深度图像的每一像素进行处理,计算其对应的三维坐标,并组合成云数据结构。 - **获取相机参数.cpp**:这部分代码可能涉及读取和应用相机内参,以便校正图像畸变和精确计算三维坐标。 通过这个项目,开发者不仅可以学习到如何利用C++和Intel RealSense SDK来处理云数据,还能深入理解深度相机的工作原理和实际应用。此外,对于想要在机器人导航、AR/VR、工业检测等领域使用云技术的开发者来说,这是一个宝贵的资源。
2024-11-18 19:41:26 724.32MB 深度相机 realsense
1
标题 "d435i深度相机读取数据并保存到本地" 涉及到的主要技术是使用RealSense D435i深度相机获取3D云数据,并将其存储在本地计算机上。RealSense D435i是Intel公司生产的一款高性能、多功能的深度相机,它能够提供RGB图像和深度信息,广泛应用于机器人导航、AR/VR、3D建模等领域。 我们需要了解3D云的基本概念。3D云是由多个三维坐标组成的集合,每个代表空间中的一个位置,通常附带有颜色信息。这些通过扫描或传感器测量获得,可以用于重建物体表面的几何形状,从而实现3D建模和环境感知。 RealSense D435i相机的工作原理是利用结构光技术和ToF(Time-of-Flight)来生成深度信息。结构光技术通过投射特定图案的红外光到场景上,然后通过摄像头捕捉反射回来的图案,通过计算图案的变形程度来计算距离;ToF则通过测量光线从发射到返回的时间来确定距离。这两种方法结合使得D435i能提供精确且稳定的深度数据。 为了读取D435i相机的数据,我们需要使用Intel提供的RealSense SDK(软件开发工具包)。SDK提供了多种编程语言(如C++、Python等)的接口,使得开发者可以方便地访问相机的各种功能。以下是一个基本的步骤概述: 1. **安装SDK**:首先需要在官方GitHub仓库下载并安装适用于目标平台的RealSense SDK,确保包含相应的库和头文件。 2. **初始化相机**:在代码中,通过SDK创建一个设备实例,连接到D435i相机,设置所需的流类型(如深度图、彩色图等)和分辨率。 3. **数据流处理**:启动数据流后,SDK会持续接收相机发送的数据。开发者可以设置回调函数来处理每帧数据,比如将深度数据和RGB数据配准在一起,形成3D云。 4. **云生成**:从深度数据和颜色数据中,我们可以使用算法(如PCL库中的`pcl::concatenateFields`)将两者合并,生成带有颜色信息的3D云。 5. **保存数据**:将生成的云数据保存为本地文件,常见的格式有`.pcd`(Point Cloud Data)、`.ply`或`.xyzrgb`。可以使用PCL库或其他专门的云处理库来完成这个任务。 6. **优化和应用**:根据实际需求,可能还需要对云进行进一步处理,如滤波、降噪、分割等,以提高数据质量,然后应用于3D重建、目标识别等任务。 文件名 "d435i_develop" 暗示这是一个关于D435i开发的项目或教程,可能包含源代码、配置文件和说明文档。通过这个项目,你可以学习如何使用RealSense SDK从D435i获取数据,以及如何将这些数据转换为3D云并保存到本地。在实际操作中,你将深入理解3D视觉技术和深度相机的工作原理,这对于在机器人学、计算机视觉等领域进行创新性工作至关重要。
2024-11-18 15:21:33 206.35MB 3D点云
1
很多是在学习这门课程的时候做的笔记,也有部分是军队文职考试时候做的总结笔记,可帮助你快速掌握核心知识。加快复习速度。梳理大脑中知识脉络,方便记忆。最好自己理解看一遍,自己写一遍,工整的写下来。 物理部分是针对每个领域做的笔记,包括运动学、光学、热学、电磁学 等等,已经包括了所有领域。对每个领域的知识做了很简洁的知识梳理和总结,更重要的是包括了特别容易做错,特别容易混肴的知识总结。方便记忆。
2024-11-18 14:07:57 130.07MB 总结笔记
1
标题中的“预瞄跟踪控制算法”是汽车动态控制系统中的一个重要概念,它涉及到车辆在行驶过程中的路径跟踪和稳定性。预瞄跟踪控制(Predictive Path Tracking Control)是一种先进的控制策略,其核心思想是根据车辆当前状态和未来可能的行驶路径,预测未来的车辆行为,并据此调整车辆的驾驶参数,如转向角或油门深度,以实现精确的路径跟踪。 描述中提到的“单或多驾驶员模型”是模拟驾驶员行为的不同方法。单模型通常简化驾驶员为一个,考虑其对车辆输入的影响,而多模型则更复杂,可能包括驾驶员的身体各部位的动作以及视线等多方面的因素,以更真实地模拟驾驶行为。这里的“横制”可能指的是车辆横向动态控制,即车辆在侧向的稳定性和操控性。 “纯跟踪算法”是另一种路径跟踪控制策略,其目标是使车辆尽可能接近预定的行驶轨迹,通常通过优化控制器参数来实现最小误差跟踪。这种算法在自动驾驶和高级驾驶辅助系统(ADAS)中有着广泛应用。 “carsim和MATLAB Simulink联合仿真”意味着使用了两种强大的工具进行系统仿真。CarSim是一款专业的车辆动力学仿真软件,常用于车辆动态性能分析;MATLAB Simulink则是一个图形化建模环境,适合构建和仿真复杂的系统模型。将两者结合,可以创建出详尽的车辆控制系统模型,并进行实时仿真,以便测试和优化控制算法。 标签中的“matlab 算法 范文/模板/素材”表明提供的内容可能包含MATLAB编程的示例、算法实现模板或者相关研究素材,可以帮助学习者理解和应用预瞄跟踪控制算法。 压缩包内的文件可能是关于这个控制算法的详细解释、仿真步骤或者代码示例。"工程项目线上支持预瞄跟踪.html"可能是项目介绍或教程文档,"工程项目线上支持预瞄跟踪控制算.txt"可能是算法描述或代码片段,而"sorce"可能是一个源代码文件夹,包含了实际的MATLAB代码。 这个资料包提供了一个全面的学习资源,涵盖了预瞄跟踪控制算法的设计、驾驶员模型的建立、车辆横向控制的仿真,以及如何使用MATLAB和CarSim进行联合仿真。对于研究汽车控制系统的学者、工程师或是学生来说,这是一个非常有价值的学习材料。通过深入学习和实践,可以掌握高级的车辆动态控制技术,并提升在自动驾驶和汽车电子领域的能力。
2024-11-13 15:54:43 49KB matlab
1
视频课程下载——深度学习-3D云实战系列课程,附源码
2024-11-11 20:33:27 195B 深度学习 课程资源
1
CloudCompare 云工具安装包:CloudCompare-v2.13.2-setup-x64.exe,解决v2.13.1导入PCD文件时不支持中文路径等问题
2024-11-11 10:47:20 326.7MB
1
本文以XDH 为例,实现输出流水灯,测试输出是否正常。 用到了FOR NEXT循环和偏移量实现。
2024-10-31 14:35:54 14KB
1
本项目是一款基于Java及Vue框架的fuint餐饮餐营销系统源码,涵盖1125个文件,包括521个Java文件、206个Vue文件、151个JavaScript文件、67个PNG图片文件、61个XML文件、17个SCSS文件、16个JSON文件、12个JPG文件、12个VM模板文件、11个wxss样式文件。系统整合了餐、收银和餐饮会员营销等功能,旨在为奶茶店、甜品店和餐厅等实体店铺提供全方位的一站式解决方案。访问官网https://www.fuint.cn了解更多信息,感谢您的关注!
2024-10-24 16:17:20 16.74MB Java Vue 餐饮点餐系统 营销系统
1
### LAS格式云数据使用详解 #### 一、引言 LAS(Lightweight Airborne Sensor)格式是由美国摄影测量与遥感学会(American Society for Photogrammetry and Remote Sensing, ASPRS)制定的一种用于存储激光雷达(LiDAR)和其他传感器获取的三维云数据的标准格式。LAS 1.4版本于2011年11月获得批准,并在2019年3月进行了修订,其详细规定记录在官方发布的文档中。 #### 二、LAS 1.4修订历史与比较 ##### 2.1 LAS 1.4修订历史 - **批准时间**:2011年11月,LAS 1.4版本被正式批准。 - **修订日期**:2019年3月26日,该版本进行了修订并更新至最新的R14版。 - **文档构建日期**:与修订日期相同,即2019年3月26日。 - **GitHub提交标识**:本次修订的提交ID为2ea0a5b46bbca1c05d7a7e0827ebf0eb660aead5。 - **GitHub仓库**:https://github.com/ASPRSorg/LAS ##### 2.2 LAS 1.4与之前版本的比较 LAS 1.4相对于之前的版本,在以下方面进行了改进和扩展: - **数据类型扩展**:增加了新的云数据类型,支持更广泛的应用场景。 - **元数据增强**:提供了更加丰富的元数据支持,以便更好地描述和管理云数据。 - **兼容性提升**:在保持与早期版本向后兼容的同时,对格式进行了一些必要的调整,以适应新的技术需求。 #### 三、LAS格式定义 LAS格式定义主要涵盖以下几个方面: ##### 3.1 遗留兼容性 为了确保LAS 1.4与早期版本(如LAS 1.1到LAS 1.3)之间的兼容性,该标准详细规定了如何在新版本中保留旧版本的数据结构,同时允许添加新的特性。 ##### 3.2 数据结构 - **头文件**:包含文件的基本信息,如创建日期、云数据的数量等。 - **记录**:每个记录包括空间坐标(X、Y、Z)、强度值、颜色信息、分类码等。 - **扩展字段**:根据应用需求可以增加额外的字段来存储更多的信息,如附加的波形数据或纹理信息。 ##### 3.3 文件组织 LAS文件通常采用小端字节序存储数据,这意味着低字节存储在内存的低地址位置。此外,文件还可能包含多个“返回”(Return),每个返回对应一个激光脉冲反射回来的信息,从而能够捕获地面上不同高度的对象。 ##### 3.4 数据压缩 为了减少文件大小并提高处理效率,LAS 1.4支持多种压缩算法,如LAZ(LASzip)压缩。这种压缩方式能够在不损失数据质量的前提下显著减小文件体积。 #### 四、VS编译好的LAStools工具 ##### 4.1 LAStools简介 LAStools是一套专门用于处理LAS格式云数据的工具集,它由多个命令行程序组成,支持各种操作,如数据转换、过滤、可视化等。这些工具不仅适用于科研人员,也适用于需要处理大量云数据的专业人士。 ##### 4.2 VS编译环境 LAStools可以使用Visual Studio(简称VS)编译环境进行编译。通过这种方式编译出的工具集可以在Windows平台上高效运行,并且能够充分利用现代计算机硬件资源。 ##### 4.3 使用指南 - **安装配置**:首先需要安装相应的Visual Studio版本,并确保安装了必要的编译器和库文件。 - **编译过程**:按照LAStools提供的编译指南,设置编译参数并执行编译命令。 - **运行测试**:编译完成后,可以通过提供的测试数据集来验证LAStools的功能是否正常。 #### 五、总结 LAS 1.4格式作为最新的云数据存储标准,不仅提高了数据的可读性和互操作性,还增加了更多实用的功能,使得云数据的管理和分析变得更加高效。同时,借助于像LAStools这样的工具集,用户能够更加方便地处理大规模的云数据,从而推动了地理信息系统(GIS)和遥感领域的技术进步。
2024-10-24 10:28:23 278KB 说明文档
1