本人带的一个本科毕设资料,内含全部可执行代码。包括YOLOV5复现,YOLOV5加注意力机制改进,成功将在VOC数据集上的精确度由76%提升至77%。 包括训练及测试代码,仅包括代码,本人已经调通,仅需要更改路径即可。不包含预训练权重,资源仅包含本人实现的全部代码,不包含论文,应对本科毕设足够。 预训练权重、论文模板、演示视频,可私信获取。
2024-05-12 16:38:32 7.53MB YOLO YOLOv5 注意力机制 毕业设计
1
yolov8添加注意力机制-学习记录
2024-04-28 21:30:07 1.18MB yolo 目标检测
1
自己整理的YOLO模型的各种改进文献 包括添加注意力模块 改进骨干网络 改进特征融合 改进输出层等
2024-04-28 16:41:49 186.13MB 网络 网络
1
一份PPT带你快速了解Graph Transformer:包括Graph Transformer 的简要回顾且其与GNN、Transformer的关联 【图-注意力笔记,篇章1】Graph Transformer:包括Graph Transformer 的了解与回顾且其与GNN、Transformer的关联 【图-注意力笔记,篇章2】Graphormer 和 GraphFormers论文笔记之两篇经典Graph Transformer来入门 【异构图笔记,篇章3】GATNE论文阅读笔记与理解:General Attributed Multiplex HeTerogeneous Network Embedding 包含这几个部分 可以参考我的博客:https://blog.csdn.net/qq_41895003/article/details/129218936
2024-04-26 13:32:10 3.38MB 深度学习 Transformer
1
Attention注意力机制,在传统的CNN模型和transform模型中均广泛使用。本文就主要对基于transform的注意力机制进行展开: 1. Attention是什么 2. Attention为什么要引入到语音领域 3. Attention的优点 4. transform与CNN的对比
2024-04-21 11:34:14 1.52MB transform attention
1
针对零部件制造质量控制方面的缺陷检测,考虑到工业摄像头角度和零部件表面缺陷特征相对固定的特点,提出一种基于注意力机制的YOLO缺陷检测算法。围绕提升算法注意力,首先采用CZS算法,把图像上的缺陷区域剪切、缩放和拼接成新图像,使注意力集中于缺陷相关区域;然后采用裁减主干网络算法,裁减掉原版YOLOv3主干网络中无用的检测尺度层;最后使用数据增强算法增加训练样本量。实验案例结果表明:该算法检测精度99.2%,单帧图像检测时间0.01 s,性能均优于原版YOLOv3;该算法在固定摄像头场景下具有一定先进性,3项提升注意力的策略使算法训练精度收敛的更快、检测速度更快、检测性能更稳定。
2024-03-27 17:29:16 1.73MB 毕业设计 注意力机制 yolo
1
信号处理--多分辨率单通道注意力脑电睡眠分类 完整代码
2024-03-24 13:26:09 27KB
1
利用ViT模型实现图像分类,本项目具有强大的泛化能力,可以实现任何图像分类任务,只需要修改数据集和类别数目参数。这里采用的是开源的“猫狗大战”数据集,实现猫狗分类。 本项目适用于Transformer初学者,通过该实践项目可以对于ViT模型的原理和结构有清晰地认识,并且可以学会在具体项目中如何运用ViT模型。本项目代码逻辑结构清晰,通俗易懂,适用于任何基础的学习者,是入门深度学习和了解Transformer注意力机制在计算机视觉中运用的绝佳项目。
1
基于注意力机制attention结合门控循环单元GRU分类预测,GRU-Attention分类预测。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2024-02-23 20:04:18 74KB
1
基于卷积神经网络-双向长短期记忆网络结合注意力机制(CNN-BILSTM-Attention)回归预测,多变量输入模型。matlab代码,2020版本及以上。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-02-23 16:18:23 33KB 网络 网络 matlab
1