【内容介绍】 python,sklearn机器学习,logstic等各种回归常用的鸢尾花数据集,含训练集和测试集,csv格式,其中训练集包含鸢尾花特征及标签数据120组,测试集包含特征及标签数据30组。 【适用场景】 需要一些练手分类数据集或采用sklearn下载相关数据集遇到问题的python机器学习初学阶段 【所需条件】 建议使用pandas等python表格数据工具包进行导入,数据格式为常见的csv表格形式
2022-09-28 09:07:06 1KB python 机器学习 分类预测 数据集
1
社会上的主要疾病是全世界女性的乳腺癌,其中27%的女性患有癌症。 机器学习分类器适合医师以低成本和时间进行完美诊断。 分类器的比较性能分析需要获得准确的诊断,因为医学数据由本质上嘈杂的高维数据组成。 在这项研究中,将不同的分类器机器学习技术应用于乳腺癌数据集。 印度的癌症发生率在30年代初有所增加,但在50-64岁时达到最高点。 根据NICPR报告,在28名妇女中,有一名妇女患了乳腺癌。 但是这种比例将改变城市人口,其中22名妇女中有1名妇女受到影响。 在农村,该比例增加到每60名妇女中增加1名? 通过早期诊断和治疗可以提高患者的治愈率,这可以延长他们的寿命。 在这里,我们已经建立了一个模型来识别癌细胞是良性还是恶性的。 我们使用了机器学习技术分类器。 在这里,我们必须确定一种在不同的手术条件和数据集下预测疾病的合适技术。 结果分析表明,SVM被认为是识别不同性能矩阵(例如灵敏度,准确性,误差和特异性)的合适选择。
2022-09-25 09:22:28 1.03MB Machine learning Breast cancer
1
以Iris兰花数据集为例子: 从UCI数据库中下载的Iris原始数据集的样子是这样的,前四列为特征列,第五列为类别列,分别有三种类别: Iris-setosa, Iris-versicolor, Iris-virginica。
2022-09-22 16:25:33 4.83MB SVM 神经网络
1
32机器学习-分类回归1
2022-08-03 18:00:28 4.6MB 机器学习 回归
1
Bacterial leaf blight Brown spot Leaf smut 里面包含这三种水稻病害叶片白底图,可以添加数据量
2022-07-20 21:04:02 76.64MB 机器学习 水稻病害 叶片病害 分类识别
1
1、CNN,BCIC IV 2b,无,是.zip 2、ANN BCICIV_2a_gdf,83%,是.zip 3、CRAM,BCICIV 2a_gdf,59.1%,无.zip 7、CNN-SAE,数据BCICIV_2b_gdf,77%, 8、MISCNN,BCICIV_2a mat,73%,无.zip 9、LSTM+CRNN,BCI IV-2A,70%,无.zip 12、TCNet,BCIIV-2A,77.3%,无.zip 13、新算法,BCIIV-2A,2B,seed,数据集, 15、CNN,bciiv-2b,70.7%,无.zip
2022-07-14 21:10:10 105.42MB BCI竞赛 机器学习 运动想象 脑电信号
什么是机器学习分类算法?【K-近邻算法(KNN)、交叉验证、朴素贝叶斯算法、决策树、随机森林】.doc
2022-07-09 19:05:02 1.75MB 技术资料
机器学习模型,基于paddlepaddle训练的分类,120种狗狗分类,已经封装成web,支持一键部署,操作简单,只需按照paddlepaddle,和paddlex等Python用到的相关库,既可一键部署
2022-06-27 22:04:52 196.63MB 机器学习 分类 图像分类
机器学习大作业-机器学习分类,回归,聚类算法项目源码 第一次作业 LinearDiscriminatorAnalysis分类,逻辑回归2,3分类 第二次作业 决策树 第三次作业 MLPClassifier分类器,Percepton线性分类器 第四次作业 一维拟合,二维拟合,支持向量机分类 第五次作业 多项式朴素贝叶斯分类器 第六次作业 GMM聚类算法 第七次作业 AdaBoostClassifier分类器 第八次作业 KMeans,KMedoids聚类
癌症是导致人类死亡的众所周知的疾病,乳腺癌(BC)是女性诊断出的癌症之一。 一生中大约有八名女性被诊断出患有BC。 如果尽早诊断出BC,可以很容易地进行治疗。 这项研究的方法是通过不同的机器学习(ML)技术来识别患有BC或不患有BC的患者。 在这项研究中,威斯康星州诊断性乳腺癌(WDBC)数据集将通过支持向量机(SVM),k最近邻(k-NN),朴素贝叶斯(NB),决策树(DT)和逻辑回归(LR)进行分类)。 分类之前有一个预处理阶段,其中五个不同的分类器应用了5倍交叉验证方法。 分类性能是通过使用混淆量度通过性能测量参数(即准确性,敏感性和特异性)来测量的。 在这项研究中,SVM在归一化过程后发现的最佳性能为99.12%的精度。
2022-05-21 16:38:44 544KB Breast Cancer WDBC SVM
1