什么是机器学习分类算法?【K-近邻算法(KNN)、交叉验证、朴素贝叶斯算法、决策树、随机森林】.doc
2022-07-09 19:05:02 1.75MB 技术资料
python朴素贝叶斯完整代码,数据以及结果图片
2022-06-19 19:29:53 21KB python 朴素贝叶斯算法
1
机器学习课设大作业基于BERT和朴素贝叶斯算法的新闻文本分类项目(源码+大作业+数据集)。一个很完整的项目源码,操作没难度,新手也可放心下载。 data文件夹中已经包括了初始的数据集和处理之后的数据集。.csv文件初始数据集,另外两个是经过News_prediction.ipynb代码处理过的。在Bert和NaiveBayes训练函数中直接加载上来。 result文件夹中的文件是朴素贝叶斯和Bert模型训练后的输出文件 互联网假新闻分类 一共三种类别:真新闻、假新闻、不用判断 40000条训练文本数据,10000条测试数据。 基于正则表达式和Jieba完成特征工程 朴素贝叶斯:tf-idf词嵌入。87.4% BERT:cn-wmm预训练词向量。5-epoch,91.4%
朴素贝叶斯算法的java实现,具有很好的分类效果
2022-06-04 22:31:23 15KB 朴素贝叶斯
1
從貝氏機率公式_看AI賦能人腦_ok2
2022-05-17 17:08:40 1.06MB 人工智能 综合资源 朴素贝叶斯算法
使用sklearn库实现朴素贝叶斯算法。使用词向量算法对文本数据进行处理。 资源内容包括: 1、完整的用于实现新闻分类任务的源码文件(ipynb格式) 2、哈工大停用词表 3、四川大学机器智能实验室停用词表 4、用于测试的新闻数据 贝叶斯定理由英国数学家贝叶斯(Thomas Bayes 1702-1761)发展 用来描述两个条件概率之间的关系 在B条件下A发生的概率: P(A∣B)=P(AB)/P(B) 在A条件下B发生的概率: P(B∣A)=P(AB)/P(A) 则:P(A∣B)P(B) = P(B∣A)P(A) 可导出:P(A∣B)=P(B∣A)P(A)/P(B) 或 P(A∣B) P(B) = P(B∣A)P(A) 贝叶斯公式: P(Y|X)=P(X|Y)P(Y) / P(X) 在机器学习中: X:代表特征向量 Y:代表类别 P(X):先验概率,是指根据以往经验和分析得到的概率。 P(Y|X):后验概率,事情已经发生,这件事情发生的原因是由某个因素引起的可能性的大小 P(X|Y):条件概率,在已知某类别的特征空间中,出现特征值X的概率
2022-05-11 17:06:15 9.82MB 算法 分类 人工智能 机器学习
实现了高斯、多项式、伯努利三种朴素贝叶斯模型,能够处理离散型数据和连续型数据,并提供预测结果概率。对于像鸢尾花这类的连续型数据可以直接采用MyGaussianNB预测。离散型数据采用MyMultinomialNB预测。离散型数据,且特征值只有0,1两种取值情况的采用MyBernoulliNB预测。三种模型都可以通过score方法评估模型准确率,都可以通过predict_proba方法输出预测结果概率。 此外,为了优化和改进模型,使MyMultinomialNB和MyBernoulliNB能够预测连续型数据,还实现了基于numpy和pandas的分箱函数MyDiscretizer以及二值化函数MyBinarizer。
2022-05-04 04:55:43 47KB 人工智能 python 朴素贝叶斯算法
1
贝叶斯分类算法是统计学的一种概率分类方法,朴素贝叶斯分类是贝叶斯分类中最简单的一种。其分类原理就是利 用贝叶斯公式根据某特征的先验概率计算出其后验概率,然后选择具有最大后验概率的类作为该特征所属的类。之所以称之为”朴素”,是因为贝叶斯分类只做最原始、最简单的假设:所有的特征之间是统计独立的。 朴素贝叶斯法(Naive Bayes model)是基于贝叶斯定理与特征条件独立假设的分类方法。 最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier 或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响
2022-04-27 16:05:48 1.46MB 算法 机器学习 数据结构 人工智能
1
朴素贝叶斯算法学习笔记。
2022-04-27 15:01:54 24KB 朴素贝叶斯 算法
1
提出了一种利用支持向量机改进的朴素贝叶斯算法——TSVM-NB算法。首先利用NB算法对样本集进行初次训练,利用支持向量机构造一个最优分类超平面,每个样本根据与其距离最近样本的类型是否相同进行取舍,这样既降低样本空间规模,又提高每个样本类别的独立性,最后再次用朴素贝叶斯算法训练样本集从而生成分类模型。仿真实验结果表明,该算法在样本空间进行取舍过程当中消除了冗余属性,可以快速得到分类特征子集,提高了垃圾邮件过滤的分类速度、召回率和正确率。
1