SimCLR-视觉表示形式对比学习的简单框架 消息! 我们发布了SimCLR的TF2实现(以及TF2中的转换后的检查点),它们位于。 消息! 新增了用于Colabs,请参见。 SimCLR的插图(来自 )。 SimCLRv2的预训练模型 我们在这里开源了总共65个经过预训练的模型,与论文的表1中的模型相对应: 深度 宽度 SK 参数(M) 金融时报(1%) FT(10%) FT(100%) 线性评估 监督下 50 1倍 错误的 24 57.9 68.4 76.3 71.7 76.6 50 1倍 真的 35 64.5 72.1 78.7 74.6 78.5 50 2倍 错误的 94 66.3 73.9 79.1 75.6 77.8 50 2倍 真的 140 70.6 77.0 81.3 77.7 79.3 101 1
1
增长速度 通过有效的锚图正则化可扩展的半监督学习 BibTeX: @article {wang2016scalable, title = {通过有效的锚图正则化可扩展的半监督学习}, 作者= {王蒙,符和富,魏杰和郝,石杰和陶,大成和吴信东}, journal = {IEEE知识和数据工程交易}, 音量= {28}, 数字= {7}, pages = {1864--1877}, 年= {2016}, Publisher = {IEEE}}
2023-03-06 15:45:01 299KB MATLAB
1
Matlab的耳语PNU学习 以下论文的MATLAB代码: “基于来自阳性和未标记数据的分类的半监督分类”,ICML 2017。 “基于正无标记学习的半监督AUC优化”,MLJ 2018。 也可以看看 如果您需要Python代码,请访问。
2023-02-24 19:37:28 30KB 系统开源
1
针对显著性检测中特征选择的主观片面性和预测过程中特征权重的难以协调性问题,提出了一种基于全卷积神经网络和多核学习的监督学习算法。首先通过MSRA10K图像数据库训练出的全卷积神经网络(FCNN),预测待处理图像的初步显著性区域;然后在多尺度上选择置信度高的前景、背景超像素块作为多核支持向量机(SVM)分类器的学习样本集,选择并提取八种典型特征代表对应样本训练SVM;接着通过多核SVM分类器预测各超像素显著值;最后融合初步显著图和多核学习显著图,改善FCNN网络输出图的不足,得到最终的显著性目标。该方法在SOD和DUT-OMRON数据库上有更高的AUC值和F-measure值,综合性能均优于对比方法,验证了该方法在显著性检测中准确性的提高,为目标识别、机器视觉等应用提供更可靠的预处理结果。
1
基于监督学习的web入侵检测系统
2022-12-09 12:27:15 2.33MB 入侵检测系统 监督学习
基于MLP(多层感知机)的时间序列预测python源码+超详细注释 内容包含: 01.(多步+单变量输入)_(单步+单变量输出)_监督学习数据 02.(多步+单变量输入)_(单步+单变量输出)_MLP模型 03.(多步+多变量输入)_(单步+单变量输出)_监督学习数据 04.(多步+多变量输入)_(单步+单变量输出)_MLP模型 05.(多步+多变量输入)_(单步+多变量输出)_监督学习数据 06.(多步+多变量输入)_(单步+多变量输出)_MLP模型 07.多路输入_(多步+多变量输入)_(单步+单变量输出)_MLP模型 08.多路输出_(多步+多变量输入)_(单步+多变量输出)_MLP模型 09.(多步+单变量输入)_(多步+单变量输出)_监督学习数据 10.(多步+单变量输入)_(多步+单变量输出)_MLP模型 11.(多步+多变量输入)_(多步+单变量输出)_监督学习数据 12.(多步+多变量输入)_(多步+单变量输出)_MLP模型 13.(多步+多变量输入)_(多步+多变量输出)_监督学习数据 14.(多步+多变量输入)
2022-12-02 14:29:41 16KB MLP 多层感知机 监督学习数据 MLP模型
当对大量的标记数据集合(如ImageNet)进行训练时,深度神经网络展示了它们在特殊监督学习任务(如图像分类)上的卓越表现。
2022-11-28 21:31:58 3.02MB 《深度半监督学习》
1
SOLD² - Self-supervised Occlusion-aware Line Description and Det
2022-11-23 11:26:27 19.5MB 无监督学习 关键点检测
1
基于半监督学习的遥感图像分类研究_徐庆伶.pdf ,pdf,论文
2022-11-21 18:34:22 102.52MB 遥感图像分类
1
无监督学习中用于数据分类的算法,包括原始数据。
2022-11-19 10:25:00 3KB matlab 无监督学习 聚类
1