基于训练好的语言模型(使用gensim的word2vecAPI),编写了一个情感分类模型,包含一个循环神经网络模型(LSTM)和一个分类器(MLP)。首先,将一个句子中的每个单词对应的词向量输入循环神经网络,得到句子的向量表征。然后将句向量作为分类器的输入,输出二元分类预测,同样进行loss 计算和反向梯度传播训练,这里的 loss 使用交叉熵 loss。
2023-03-19 15:08:18 12KB nlp pytorch lstm rnn
1
对下载的IMDB数据集中的test和train分别进行预处理从而方便后续模型训练,代码为PreProcess.py。预处理主要包括:大小写转化、特殊字符处理、stopwords过滤、分词,最后将处理后的数据存储为CSV格式,以方便后续调试。借用了nltk的 stopwords 集,用来将像 i, you, is 之类的对分类效果基本没影响但出现频率比较高的词,从训练集中清除。
2023-03-01 16:29:27 1KB pytorch RNN lstm 情感分类
1
基于BERT的德语社交媒体文本情感分析,李澜,叶勇超,德语语法复杂,语序多变,造成其社交媒体文本情感分析难度较大,相关研究较少。为解决以上研究难点,本文分析了德语及其社交媒体文本��
2022-08-24 00:22:49 1.41MB 德语文本
1
使用bert进行文本情感分类的源码
2022-08-23 20:37:05 9KB bert 深度学习
1
对话情绪识别 对话情绪识别适用于聊天、客服等多个场景,能够帮助企业更好地把握对话质量、改善产品的用户交互体验,也能分析客服服务质量、降低人工质检成本。 对话情绪识别(Emotion Detection,简称EmoTect),专注于识别智能对话场景中用户的情绪,针对智能对话场景中的用户文本,自动判断该文本的情绪类别并给出相应的置信度,情绪类型分为积极、消极、中性。
2022-07-21 10:07:33 78.87MB 人工智能 神经网络 深度学习 机器学习
1
用于本项目文本情感分析部分的源码
2022-05-31 00:29:56 173KB 源码软件
1
nlp 短文本情感分析 微博语料库 带标记
2022-05-16 19:09:11 345KB 自然语言处理 文档资料 人工智能 nlp
1
基于主题情感混合模型的无监督文本情感分析
2022-05-02 10:04:18 450KB 文档资料
这是一个面向句子的情感分类问题。训练集和测试集已给出,使用训练集进行模型训练并对测试集中各句子进行情感预测。训练集包含10026行数据,测试集包含4850行数据。使用run_classifier.py对文本进行情感分类预测,模型为BERT-base基础版本模型。
2022-04-26 09:10:45 754.67MB bert 自然语言处理 分类 文档资料
1
包含验证集、测试集、训练集 设置的是0积分下载
2022-04-19 13:49:49 395KB lstm 分类 深度学习 自然语言处理
1