NLP-study 记录做过的NLP任务,包含但不限于文本分类,关系分类,命名实体识别,文本摘要,文本生成等,基于tensorflow2.0或者pytorch框架。
2024-01-12 21:57:28 83.48MB Python
1
给大家分享一套课程——自然语言处理NLP企业级项目课程合集课程(实体关系抽取+情感分析+新闻文本分类+火车票识别+命名实体识别),大家下载学习。
2024-01-02 17:35:20 299B 自然语言处理 课程资源
1
支持向量机vc++实现.一个很好的分类系统 .可以分类文本
2023-10-15 08:05:51 1.53MB svm 文本分类
1
分享自然语言处理课程——自然语言处理NLP企业级项目课程合集(实体关系抽取+情感分析+新闻文本分类+火车票识别+命名实体识别),视频,源码,数据,课件,资料完整
2023-07-21 10:33:18 287B 自然语言处理 NLP
1
是一个情感分类的项目,前面是对emotion数据集的处理和分析,以及将整个数据集分词以及处理成模型的输入形式。 主要是通过加载一个文本分类的预训练模型,然后在数据集上面进emotion数据集上面的fine-tuning。然后对训练好的模型进行效果的分析,包括F1,Precision和Recall等。 fine-tune transformers distilbert-base-uncased - distilbert 是对 bert 的 distill 而来 - 模型结构更为简单, - bert-base-uncased 参数量:109482240 - distilbert-base-uncased 参数量:66362880 - trainer默认自动开启 torch 的多gpu模式, - `per_device_train_batch_size`: 这里是设置每个gpu上的样本数量, - 一般来说,多gpu模式希望多个gpu的性能尽量接近,否则最终多gpu的速度由最慢的gpu决定, - 比如快gpu 跑一个batch需要5秒。
2023-07-10 16:26:26 658KB bert Transformer fine-tuning LLM
1
自然语言处理作业:基于CNN的文本分类模型训练 数据划分 分成训练集、验证集、测试集 加载预训练词向量模型 基于CNN的文本分类 数据划分 分成训练集、验证集、测试集加载预训练词向量模型 ../资料/实验/第四章/sgns.sogou.word.bz2 使用Keras对语料进行处理 提取文本中的词并向量化处理,也可以使用其他工具,或自己编写 定义词嵌入矩阵生成Embedding Layer构建模型、训练、评估 输出模型的准确率(以图的形式)
2023-06-08 20:56:11 338.98MB 自然语言处理 cnn
1
本资源是https://jarod.blog.csdn.net/article/details/127636618的配到资源,详细讲解了如何从零开始用TensorFlow搭建TextCNN,完成文本分类任务。 包含完整源代码和教程文档。模型搭建在Jupyter环境,可以根据教程文档或参考源代码自己一步一步实现自己的TextCNN,并在自己的数据集上训练出自己的模型。 模型在测试集上准确率达到96.45%,可以满足生产使用。
2023-05-12 17:45:36 60KB 深度学习 TextCNN python TensorFlow
1
pytorch实现文本情感分析详细教程 关键词:python,情感分析,英文文本分类,Bi-LSTM 训练集准确度高达98%,验证集准确度最高达到82%,数据集来自竞赛平台DataCastle,竞赛链接为:https://challenge.datacastle.cn/v3/cmptDetail.html?spm=5176.12282016.0.0.31ed52e3oG2G01&id=359,本代码可以帮助大家获取前70的排名成绩,后续可以进行二次修改,有望冲击前50。
2023-04-22 14:40:48 259.93MB 情感分析 文本分类 pytroch python
1
Keras中的字符级CNN 该存储库包含用于字符级卷积神经网络的Keras实现,用于AG新闻主题分类数据集上的文本分类。 已实现以下模型: 张翔,赵俊波,严乐村。 。 NIPS 2015 Yoon Kim,Yacine Jernite,David Sontag,Alexander M.Rush。 。 AAAI 2016 白少杰,齐科·科特尔(J. Zico Kolter),弗拉德·科特(Vladlen Koltun)。 。 ArXiv预印本(2018) Kim的CharCNN最初是经过端到端训练的语言建模管道的一部分,但已被改编为文本分类。 用法 安装依赖项(Tensorflow 1.3和Keras 2.1.3): $ pip install -r requirements.txt 在config.json文件中指定训练和测试数据源以及模型超参数。 运行main.py文件,
2023-03-29 19:13:07 11.26MB Python
1
本项目通过textcnn卷积神经网络实现对文本情感分析识别,由python 3.6.5+Pytorch训练所得。
2023-03-22 16:44:42 289KB pytorch python 文本分类 情感分析
1