4.2 整车基本参数模型创建 点击 Sprung mass,进入整车基本参数模版(见图 5),点击按钮 ,弹出 新建对话框,如图 4,按 3 命名规则完成命名,点击 Set 完成 HL-1 整车基本参 数模板建立。然后,按要求分别输入轴距、轮胎静力半径、整车高度、整车宽度、 质心位置、簧上质量以及转动惯量等基本参数,完成 HL-1 整车基本参数模型创 建。 图 4. Carsim 整车基本参数模型新建对话框 图 5. Carsim 整车基本参数模板 4.3 整车空气动力学模型创建 点击 Sprung mass,进入整车基本参数模板(见图 7),点击按钮 ,弹出 新建对话框,如图 6,按 3 命名规则完成命名,点击 Set 完成 HL-1 整车基本参 数模板建立。然后,按要求分别完成 Long.force、Lateral force、Vertical force、 Roll moment、Pitch moment、Yew moment 等设置,输入动力学参考点、迎风面 积以及空气密度。(此模型一般应用默认值,如果有空气动力学相关试验,可以
2025-05-13 13:11:06 6.46MB carsim 建模规范
1
内容概要:本文详细介绍了如何利用MATLAB和Simulink构建电动助力转向系统(EPS)模型。首先,通过定义车辆的基本参数,建立了整车二自由度模型,用于研究车辆在转向过程中的动力学行为。接着,设计了助力特性曲线模型,该模型根据车速和方向盘转角确定助力电机提供的助力力矩。随后,创建了助力电机模型,模拟电机的工作原理及其输出转矩。此外,还构建了齿条模型,将电机的旋转运动转化为直线运动,从而实现车轮转向。最后,讨论了模型的控制方法、输入输出关系,并提供了具体的代码示例。 适用人群:汽车工程领域的研究人员和技术人员,尤其是那些希望深入了解EPS系统工作原理的人士。 使用场景及目标:适用于高校教学、科研项目以及企业产品研发过程中,帮助相关人员掌握EPS系统的建模与仿真技术,提高对EPS系统的理解和优化能力。 其他说明:文中不仅给出了详细的理论推导和代码实现,还分享了一些实用的经验和技巧,如助力特性曲线的设计、电机控制参数的选择等,有助于读者更好地理解和应用相关知识。
2025-04-12 15:49:17 361KB MATLAB Simulink EPS 动力学建模
1
在当今社会,纯电动汽车(EV)作为一种新型能源汽车,对于减少空气污染、降低对传统化石燃料的依赖以及推动可持续交通的发展起到了重要作用。为了深入理解和研究纯电动汽车的性能和动力学行为,研究人员和工程师们利用Matlab Simulink软件开发了一系列的仿真模型。这些模型覆盖了包括电机、电池、变速器、驾驶员行为以及整车动力学在内的多个方面,构成了一个完整的整车仿真系统。通过对这些模型的分析和仿真运行,可以对纯电动汽车的各种性能指标进行预测和优化,从而在实际生产和设计之前,提前发现和解决问题。 电机模型主要关注于电动机的转矩输出特性、效率、散热能力以及控制策略等方面。电机的性能直接影响到纯电动汽车的动力表现和能量利用效率,因此,在仿真模型中需要精确地模拟电机的动态响应和稳态特性。电池模型则关注电池的充放电特性、能量密度、循环寿命和热管理等,这些都是影响纯电动汽车续航里程和安全性的关键因素。通过仿真模型,可以研究不同工况下的电池性能变化,以及最佳的充电策略。 变速器模型涉及到变速器的换挡逻辑、传动效率和齿轮比等,它对整车的加速性能和能量利用效率有显著影响。驾驶员模型则尝试模拟驾驶员的操作行为,如加速、减速和转向等,这对于评估车辆的响应特性和乘坐舒适性至关重要。整车动力学模型则将上述所有子系统模型集成为一个整体,以预测纯电动汽车在各种行驶条件下的动力学表现,包括加速度、稳定性、操控性和制动性能等。 通过这些仿真模型,研究人员可以对纯电动汽车进行全面的分析,不仅包括常规的加速和制动测试,还能够模拟极端工况下的性能表现,从而确保车辆的安全性和可靠性。此外,仿真模型还可以帮助设计师进行更高效的设计迭代,通过改变仿真中的参数,快速评估不同设计方案的优劣,节约了时间和成本。 在实际的交通环境中,纯电动汽车的性能还会受到外部条件的影响,如天气、道路条件以及交通流量等。因此,仿真模型还应该考虑到这些因素的不确定性,以便进行更为准确的预测。在进行仿真分析时,研究人员往往会利用软件中提供的各种模块,例如车辆动力学模块、环境模块和控制模块等,这些模块可以进行复杂的计算和模拟,为纯电动汽车的研究提供强大的支持。 文章标题通用版十字路口交通灯仿真运行程序车辆.doc、纯电动汽车整车仿真模型深度解析随着电.doc等文档,以及相关的图片和文本文件,很可能是对上述仿真模型进行详细解释和说明的资料。这些文件可能包含了模型的具体构建方法、参数设置、仿真步骤以及结果分析等方面的内容。例如,“文章标题通用版十字路口交通灯仿真运行程序车辆.doc”可能描述了纯电动汽车在交通环境中的运行仿真,包括与交通灯系统的交互等;而“纯电动汽车整车仿真模型电机模型.html”可能详细介绍了电机模型的构建和仿真过程。 通过对纯电动汽车整车仿真模型的研究,不仅可以提升纯电动汽车的设计和制造水平,还可以帮助我们更好地理解和掌握纯电动汽车的运行机理,为纯电动汽车的广泛应用和推广打下坚实的基础。
2025-04-09 17:37:18 294KB 数据结构
1
Simulink和Stateflow是MathWorks公司推出的一款用于系统级建模与仿真的软件工具,广泛应用于工程和技术领域的计算机辅助设计。Simulink提供了一种可视化编程环境,用户可以通过拖放的方式快速构建动态系统的模型;Stateflow则基于有限状态机(FSM)和流程图的理论,用于设计嵌入式系统中的复杂逻辑控制策略。二者相结合,尤其适用于对复杂系统进行建模、仿真和分析,比如纯电动汽车(BEV)的整车控制策略。纯电动汽车作为一种新型的动力交通工具,其控制系统是其核心组成部分,涉及到车辆的启动、运行、停止以及电池能量管理等关键功能。 根据提供的文件信息,我们可以提取以下与Simulink、Stateflow以及纯电动汽车整车上下电策略相关的关键知识点: 1. Simulink Stateflow模块:在Simulink模型中,Stateflow模块用来设计和模拟复杂决策逻辑的控制流程。例如,纯电动汽车上下电过程中的启动、充电、运行和停止等状态转换,这些都需要用到状态机理论来精确描述。 2. 纯电动汽车整车上下电控制策略:整车上下电策略涉及到纯电动汽车在各个阶段的能源管理、信号响应和安全控制。在启动阶段,需要确保所有系统就绪并安全地连接电源;在运行阶段,需要保证动力系统平稳工作并进行能量回收;在停止阶段,需要确保系统的平稳关闭和电池的保护。 3. 上下电控制策略模型的搭建:使用Simulink Stateflow搭建上下电控制策略模型,意味着需要详细设计状态转移图,这包括各个状态(如启动、正常运行、减速、停止、充电等)和触发状态转移的事件(如驾驶员操作、系统故障、电池状态等)。同时,需要定义各个状态下的具体控制行为,如电机的转矩控制、能量回收的控制以及电池的充放电管理。 4. 上下电控制策略的仿真与测试:Simulink和Stateflow提供的仿真环境允许开发者在实际硬件部署前对控制策略进行验证和优化。开发者可以在仿真环境中模拟各种工作场景和极端情况,评估控制系统的鲁棒性和性能。 5. 纯电动汽车整车控制器开发:在设计整车上下电控制策略的过程中,需要综合考虑整车控制器的功能,比如VCU(Vehicle Control Unit)负责车辆的总体控制,包括动力系统、传动系统、转向系统、制动系统等的协调工作。 6. Simulink和Stateflow在汽车领域的应用:Simulink和Stateflow在汽车领域的应用不仅限于电动车的上下电策略,还包括了动力模型构建、汽车ABS(防抱死制动系统)、再生制动控制策略、自动变速器性能仿真、电子控制软件开发、黏着控制仿真、多模态飞行控制律仿真等。通过这些应用实例,我们可以看到Simulink和Stateflow在建模、仿真和控制策略开发方面的强大能力。 总结以上内容,Simulink和Stateflow作为强大的工程工具,在纯电动汽车整车上下电策略开发中的应用是多方面的。从理论到实践,从基础到高级应用,Simulink和Stateflow为工程师提供了构建复杂系统模型和控制策略的有效途径。通过手把手的教学和实际案例的应用,开发者可以更深入地理解纯电动汽车整车控制的核心技术,并能够高效地解决相关设计和优化问题。
2025-03-31 09:00:19 659KB simulink stateflow 上下电控制策略
1
AVL Cruise是一款强大的汽车动力系统仿真工具,专用于评估汽车的燃油经济性和排放性能。它在汽车行业的研发过程中起着至关重要的作用,特别是在车辆传动系统和发动机的设计与优化上。这款软件通过精确的数学模型,使得工程师能够在实际制造之前对车辆的性能进行预测和调整,从而提高效率并减少实验成本。 在“avl-Cruise自学教程(有两个整车实例教程)”中,用户可以深入学习如何使用AVL Cruise进行整车模型的构建和仿真。教程首先会介绍软件的基本界面和功能,包括如何导入和编辑不同的组件模型,如发动机、变速器、驱动轴等。接着,会详细阐述前驱车(自动挡)的实例,这通常涉及到以下几个关键步骤: 1. **模型建立**:创建车辆的基本架构,包括车身、底盘、动力总成等,同时设置各个部分的物理属性,如质量、惯量、几何尺寸等。 2. **发动机模型**:构建发动机模型,包括气缸数量、排量、燃烧特性等,同时设定燃油喷射和点火系统参数。 3. **传动系统模型**:设计变速器的换挡规律,配置离合器和差速器的工作特性,确保动力流畅传递。 4. **驾驶循环**:定义车辆的行驶工况,如UDC(Urban Dynamometer Cycle)或FTP(Federal Test Procedure)等,模拟真实路况下的驾驶行为。 5. **仿真设置**:设定仿真时间、步长等参数,确保计算精度和效率。 6. **仿真运行与结果分析**:执行仿真过程,观察并分析输出的性能指标,如燃油消耗、排放物浓度、速度曲线等。 7. **优化调整**:根据仿真结果对模型进行迭代优化,例如调整发动机控制策略、改善传动效率,以实现更好的性能。 这个自学教程包含了一个完整的实例,这对于初学者来说是非常宝贵的实践机会。通过逐步跟随教程,不仅可以掌握AVL Cruise的基本操作,还能了解汽车动力系统仿真中的关键概念和技术。同时,"说明.txt"文件可能提供了关于如何使用和理解教程的额外指导,帮助学习者更好地理解和应用所学知识。 AVL Cruise自学教程是一个全面且实用的学习资源,对于想进入汽车仿真领域或提升现有技能的专业人士来说,是一个不可多得的资料。通过深入学习和实践,你可以掌握汽车性能仿真技术,为你的职业生涯打开新的可能性。
2024-09-20 10:17:15 4.46MB Cruise 汽车仿真 整车模型 自学文档
1
matlab simulink仿真下的七自由度整车模型
2024-05-17 21:55:38 106KB
最近十年来,整车电子电气架构开发领域,基于模型的开发方法已经被广泛接受,甚至被作为首选的开发方法,目前已经成为保证设计成功的一个必要措施。随着燃油经济性、环境保护和道路安全要求的逐步加强,汽车电子电气架构设计中必须要考虑系统整体优化,并需要提高开发效率、缩短开发时间,此时基于模型的方法就变得非常重要。采用这种方法必须要借助工具才能实现,PREEvision是整车厂中常用的系统架构设计及优化工具。其功能包括需求开发、逻辑功能设计、网络和部件架构、电气系统和线束设计以及拓扑结构设计。该工具涵盖了从概念原型设计阶段到具体详细设计阶段,并支持大型工程团队的详细开发和系统规范制定工作。本文依托该工具对基
2024-05-06 21:02:49 298KB
1
混合动力汽车整车能量管理策略
2024-04-05 11:08:44 2.51MB 混合动力汽车
1
电动汽车模型的各模块的Simulink模型,包括驾驶员模块,整车控制器模块,电机模块,变速器模块,主减速器模块,车轮模块,车速模块以及BMS模块。 附有说明文档,文档详细的描述了模型的建模过程及功能 电动汽车模型的Simulink模型包含多个模块,其中包括驾驶员模块,整车控制器模块,电机模块,变速器模块,主减速器模块,车轮模块,车速模块以及BMS模块。这些模块通过Simulink软件进行建模,并用于仿真和控制电动汽车的行为。 在电动汽车模型中,驾驶员模块负责接收驾驶员的指令和输入,并将其转化为相应的控制信号。整车控制器模块则负责协调各个模块之间的通信和控制策略。 电机模块是电动汽车的关键组成部分,它控制电动机的运行,包括速度和扭矩控制等。变速器模块用于改变电力传输的效率和转速比,以适应不同的驾驶情况。 主减速器模块负责将电机的高速旋转转换为合适的车轮转速,并提供适当的力矩输出。车轮模块用于模拟车辆与地面的接触,以确定牵引力和滚动阻力等参数。 车速模块监测车辆的实时速度,并与其他模块进行通信以实现精确的速度控制。最后,BMS模块(电池管理系统)负责监测和管理电动汽车的电池状态,
2024-03-05 20:59:23 166KB 网络 网络
1
基于RFID技术的整车物流监控方案,王旭,周照莎,为提高整车物流过程的服务质量,设计了一个基于RFID技术的整车物流监控方案。首先分析了整车物流的现状,然后分析了整车物流过程�
2024-01-10 11:54:43 234KB 首发论文
1