“中国光谷·华为杯”第十九届中国研究生数学建模竞赛-获奖名单.zip.do
2024-10-12 19:46:30 1.06MB
1
考研数学三真题1987年-2022年所有历年真题及详解(高清无水印) 1995-2022数学三历年真题及详解,内含答题卡,全部高清无水印。可直接打印。内有各年真题、各年答案速查以及各年答案详解(一道题多种解法)考研数学三真题及详解无水印。内附有简单且易懂的详细答案精解
2024-10-09 13:06:55 163.37MB
1
全国大学生数学建模竞赛是每年一度的学术盛宴,旨在锻炼大学生的创新思维和团队合作能力。在准备此类比赛时,一份良好的文档结构和规范的排版对于展示模型、论述思路至关重要。LaTeX作为一款强大的排版工具,因其高度定制化和专业性,在学术界广受欢迎。本资源提供的“全国大学生数学建模竞赛LaTeX模板”就是为了帮助参赛者快速构建专业、美观的论文。 LaTeX模板的主要特点包括: 1. **代码美化**:LaTeX允许用户通过预定义的样式和宏来实现代码的整洁与美观。在数学建模论文中,复杂的公式、算法和表格都能通过LaTeX轻松处理,使得整体视觉效果更佳。 2. **参考文献符合国标**:模板内置了符合国家标准的引用格式,确保论文的引用部分规范化,遵循GB/T 7714-2015《文后参考文献著录规则》等标准,使读者能方便地查找和验证参考文献。 3. **文件结构分明**:一个优秀的LaTeX模板通常会提供清晰的文件组织结构,如单独的章节文件、附录、参考文献文件等,便于多人协作和后期修改,同时也有助于保持文档的模块化和可维护性。 在使用LaTeX模板进行数学建模比赛时,应注意以下几点: 1. **理解模板结构**:首先要熟悉模板中的各个文件,了解它们的作用和如何相互关联。例如,`main.tex`通常是主文件,包含所有章节的引入;`biblio.bib`用于存储参考文献数据。 2. **自定义模板**:根据实际需求,可以对模板进行适当的修改,如调整页面布局、字体大小、颜色方案等,使其更符合个人或团队的风格。 3. **公式与图表**:LaTeX提供了强大的数学公式编辑功能,如`\usepackage{amsmath}`可以支持复杂的矩阵、积分等表达式。对于图表,可以使用`\usepackage{graphicx}`导入图像,并通过`\includegraphics`命令插入。 4. **引用与注释**:合理利用LaTeX的引用系统,如`\cite`和`\bibliography`,以及`\footnote`进行脚注,保证论文的逻辑性和完整性。 5. **编译与调试**:使用LaTeX编译器(如`pdflatex`、`biber`等)将源代码转化为PDF文档。遇到错误时,仔细阅读错误信息并逐行排查。 这份“全国大学生数学建模竞赛LaTeX模板”能够帮助参赛者专注于模型构建和论文内容,而无需过多关注排版细节。通过熟练掌握LaTeX的使用,可以大大提高论文的质量和效率,为赢得比赛增添助力。
2024-09-30 14:11:07 14.28MB 数学建模 数学建模比赛
1
开源数学库,包含了.NET平台上的面向对象数字计算的基础类。类似 NMath ,但 NMath 是收费的。 https://blog.csdn.net/zyyujq/article/details/123215130 Combinatorics 排列组合相关功能 ComplexExtensions 对System.Numerics类中复数相关功能的扩展 Constants 数学中常用的一些常数。 ContourIntegrate 对库的参数进行配置。 Differentiate 导数,对函数求一阶导数和二阶导数等。 Distance 各种类型的距离计算。 Euclid 整数数论。 Evaluate 多项式评价函数,类似于Matlab中Polyval。 ExcelFunctions excel 常用的函数,仅作为从excel转移到MathNet的过渡,不推荐正式使用。 FindMinimum 极小值迭代器。 FindRoots 方程求根。 Fit 使用最小二乘算法拟合数据。支持直线、多项式、指数等多种函数拟合。 Generate 生成器:斐波那契数列、线性数组、正态分布等。
2024-09-28 01:45:48 1.2MB 数学分析
1
自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学
2024-09-23 17:18:54 1009KB 自然语言处理 人工智能 nlp
1
### 2024年电工杯数学建模竞赛A题解析 #### 一、问题一 **1.1 问题分析** 本题旨在探讨不同情况下电力系统的经济运行问题,特别是考虑储能设施对系统经济性的影响。 - **第一问**:分析在没有储能的情况下,各园区的运行经济性。具体关注的指标包括购电量、弃风弃光电量、总供电成本以及单位电量平均供电成本,并进一步分析影响经济性的关键因素。 - **第二问**:分析在配置了50kW/100kWh储能设施后,各园区的运行经济性是否有所改善。此部分需制定储能设施的最优运行策略及购电计划,并解释原因。 - **第三问**:探讨50kW/100kWh储能方案是否是最优方案。如果不是,需要提出更优的储能功率、容量配置方案,并论证其优越性。 **1.2 第一问** **1.2.1 指标定义** - **购电量**:各园区从电网购买的电量总量。 - **弃风弃光电量**:由于电力过剩或传输限制等原因未能被利用的风能和太阳能发电量。 - **总供电成本**:园区供应电力的总成本,包括购电成本、发电成本等。 - **单位电量平均供电成本**:总供电成本除以总供电量得到的平均成本。 **1.2.2 结果计算** 基于提供的数据,通过计算各园区的购电量、弃风弃光电量等,得出每个园区的总供电成本和单位电量平均供电成本。 **1.2.3 关键因素分析** - **风电价格**:分析风电价格变动对各园区用电成本的影响。 - **光伏价格**:分析光伏价格变动对各园区用电成本的影响。 - **主电站电价**:分析主电站电价变动对各园区用电成本的影响。 **1.3 第二问** **1.3.1 模型建立** 在第一问的基础上,引入50kW/100kWh储能设施,建立优化模型。模型中的约束条件包括: - **SOC允许范围**:10%-90%; - **充/放电效率**:95%。 决策变量为储能策略,目标函数是使成本最低。 **1.3.2 算法求解** 采用合适的算法求解上述模型,例如线性规划、遗传算法等。 **1.3.3 求解结果** 比较配置储能前后各园区的运行经济性,评估储能设施对改善经济性的效果,并解释其原因。 **1.4 第三问** **1.4.1 模型建立** 在第二问的基础上,将储能设备容量配置方案作为决策变量之一,重新构建优化模型。 **1.4.2 计算结果** 求解优化模型,获得最佳的储能策略和容量配置方案,论证该方案相对于50kW/100kWh方案的优越性。 #### 二、问题二 **2.1 问题分析** 本题继续探讨电力系统的经济运行问题,重点关注不同参数变化对经济性的影响。 **2.2 第一问** **2.2.1 指标计算数据与代码** 提供了用于计算指标的具体数据以及相应的MATLAB代码示例。这部分主要涉及数据读取、处理及计算。 ```matlab % 代码示例 da1 = readtable("附件 1:第一题.xlsx", "VariableNamingRule", "preserve"); da2 = readtable("附件 2:第一题.xlsx", "VariableNamingRule", "preserve"); d1 = table2array(da1(:,2:4)); d2 = table2array(da2(2:25,2:7)); ``` 通过上述代码,我们可以读取Excel文件中的数据,并进行必要的计算和分析。 2024年电工杯数学建模竞赛A题主要考察参赛者在电力系统经济运行方面的数学建模能力,包括但不限于储能设施对系统经济性的影响分析、最优运行策略的制定等。通过对给定问题的深入分析和建模,可以有效地提升解决实际问题的能力。
2024-09-22 23:10:51 806KB 电工杯数学建模
1
影响世界历史进程的书,是牛顿一生最重要的科学著作,对自然科学感兴趣的可以了解下。
2024-09-14 09:16:29 10.62MB
1
《几何画板专家级课件gsp模版140例》是一份极其珍贵的教育资源,专为数学教育者和学习者打造。这份资源包含了140个精心设计的几何画板(GeoGebra)模版,旨在帮助用户更深入、直观地理解和应用几何、代数和动态数学概念。几何画板是一款强大的数学软件,它允许用户进行图形绘制、几何构造、函数解析以及动画制作,是教育领域中不可或缺的工具。 模版涵盖了各种复杂的几何形状和变换,如直线、圆、三角形、四边形的构造,还包括了相似、全等、投影、旋转、平移等几何变换的演示。这些模版不仅适用于课堂教学,也适合学生自我学习,通过动手操作,可以增强对几何原理的理解和记忆。 markdown介绍部分,很可能是对每个模版的详细说明,包括使用方法、教学目标、适用年级等,这将有助于用户快速找到适合的教学或学习素材。屏幕截图则直观展示了模版的实际效果,用户无需打开文件就能预览模版的功能和样式,提高查找和选择的效率。 “几何画板”在数学学习中的应用广泛,它可以动态演示数学概念,使抽象的理论变得可视化,这对于空间想象能力和逻辑思维的培养至关重要。例如,通过动态改变线段长度,学生可以直观理解勾股定理;通过旋转图形,可以理解相似三角形的关系。动态演示还能帮助学生理解函数图像的变化规律,如二次函数的开口方向、顶点位置等。 此外,这些模版对于教师来说,是节省备课时间、提升课堂互动性的宝贵工具。它们可以作为教学起点,教师可以根据教学需求进行修改和扩展,以适应不同层次学生的学习需求。 《几何画板专家级课件gsp模版140例》是一个全面、实用的教育资源,无论你是教师还是学生,都能从中受益。它利用几何画板的强大功能,将枯燥的数学概念转化为生动的视觉体验,为数学学习带来新的活力。通过探索和实践这些模版,你将能够更好地掌握和传授数学知识,提升数学素养。
2024-09-12 21:34:19 48.98MB 几何画板 课件模版 数学学习 动态演示
1
**FOC控制技术详解** **1. FOC(Field-Oriented Control)的本质与核心思想** FOC(Field-Oriented Control)是一种先进的电机控制策略,其核心思想是通过实时控制电机的定子磁场,使其始终与转子磁链保持90度的相位差,以实现最佳的转矩输出。这被称为超前角控制。电机的电角度用于指示转子的位置,以便在固定坐标系和旋转坐标系之间转换磁场,进而生成精确的PWM信号来控制电机。电角度的定义可以灵活,如轴与轴的夹角,主要目的是简化Park和反Park变换的计算。 **2. 超前角控制的原理** 超前角控制的关键在于使电机的磁通与转矩方向垂直,以获得最大的转矩。当转子磁场相对于定子磁场滞后90度时,电机的扭矩最大。因此,通过实时调整定子电流,使它超前于转子磁链90度,可以达到最优的扭矩性能。 **3. Clark变换** Clark变换是将三相交流电流转换为两相直轴(d轴)和交轴(q轴)的直流分量的过程,目的是将复杂的三相系统解耦为易于控制的两相系统。在Clark变换中,通过一定的系数(等幅值变换或恒功率变换)将三相电流转换为两相电流,使得电机的动态特性更易于分析和控制。 **3.1 数学推导** Clark变换的公式如下: \[ I_d = k(I_a - \frac{1}{\sqrt{3}}(I_b + I_c)) \] \[ I_q = k(\frac{1}{\sqrt{3}}(I_a + I_b) - I_c) \] 其中,\(k\) 是变换系数,等幅值变换时 \(k = \frac{1}{\sqrt{3}}\),而恒功率变换时 \(k = \frac{2}{\sqrt{3}}\)。 **4. Park变换与逆变换** Park变换是将两相直轴和交轴电流进一步转换为旋转变压器坐标系(d轴和q轴),以便进行磁场定向。逆Park变换则将旋转变压器坐标系的电流再转换回直轴和交轴电流。这两个变换在数学上涉及到正弦和余弦函数,对于实时控制至关重要。 **5. SVPWM(Space Vector Pulse Width Modulation)** SVPWM是一种高效的PWM调制技术,通过优化电压矢量的分配,实现接近理想正弦波的电机电压。SVPWM涉及到扇区判断、非零矢量和零矢量的作用时间计算、过调制处理以及扇区矢量切换点的确定。这一过程确保了电机高效、低谐波的运行。 **6. PID控制** PID(比例-积分-微分)控制器是自动控制领域常见的反馈控制策略。离散化处理是将连续时间的PID转换为适合数字处理器的形式。PID控制算法包括位置式和增量式两种,各有优缺点,适用于不同的控制场景。积分抗饱和是解决积分环节可能导致的饱和问题,通过各种方法如限幅、积分分离等避免控制器性能恶化。 **7. 磁链圆限制** 磁链圆限制是限制电机磁链的模长,以防止磁饱和现象。通过对MAX_MODULE和START_INDEX的设定,确保电机在安全的工作范围内运行,同时保持良好的控制性能。 以上知识点涵盖了FOC控制的基础理论和实际应用,包括数学推导、算法实现以及相关的控制策略。通过深入理解并实践这些内容,可以有效地设计和优化电机控制系统。
2024-09-12 11:01:38 7.34MB simulink
1
华为杯研究生数学建模优秀参考论文总结 数学建模是一种将数学理论和方法应用于解决实际问题的过程。它涉及到数学、计算机科学、物理、工程等多个领域,旨在使用数学工具和方法来描述、分析和解决实际问题。华为杯研究生数学建模竞赛是一项面向研究生的数学建模竞赛,旨在提高研究生的数学建模能力和创新能力。 自2004年以来,华为杯研究生数学建模竞赛每年都会举办,吸引了来自全国各地的研究生参与。该竞赛的主要目的是为了培养研究生的数学建模能力、创新能力和团队协作能力。通过参与该竞赛,研究生可以提高自己的数学建模能力,提高解决实际问题的能力,并且能够与来自全国各地的研究生交流经验和想法。 优秀论文是该竞赛的重要组成部分,每年都会有许多优秀的论文被选出。这些论文涵盖了数学建模的多个方面,包括数学建模方法、算法设计、数据分析等。通过阅读这些论文,研究生可以学习到数学建模的最新方法和技术,提高自己的数学建模能力。 以下是华为杯研究生数学建模优秀参考论文的总结: 2004年优秀论文链接:链接:https://pan.baidu.com/s/1cmP0iPdkf4yBxm4M5wAC6g提取码:xehl 该论文主要介绍了数学建模在实际问题解决中的应用,包括数学模型的建立、算法设计和数据分析等方面。 2005年优秀论文链接:链接:https://pan.baidu.com/s/17veh6dWdMx7F8UNZk2H77w提取码:cmfh 该论文主要介绍了数学建模在数据分析中的应用,包括数据预处理、特征工程和模型评估等方面。 2006年优秀论文链接:链接:https://pan.baidu.com/s/1a3AQ6VRibcBtaAb-glZ_Lg提取码:9fc9 该论文主要介绍了数学建模在优化问题中的应用,包括线性规划、整数规划和动态规划等方面。 2007年优秀论文链接:链接:https://pan.baidu.com/s/1rkdvvBeC8_55WALNhFCTBg提取码:x4kt 该论文主要介绍了数学建模在机器学习中的应用,包括监督学习、无监督学习和半监督学习等方面。 2008年优秀论文链接:链接:https://pan.baidu.com/s/16M_ZEuVtmsa0B5bjZY_p3g提取码:9xvt 该论文主要介绍了数学建模在计算机视觉中的应用,包括图像处理、对象识别和图像分割等方面。 2009年优秀论文链接:链接:https://pan.baidu.com/s/1zqh0Sp7fFgWHNotMNXuL_Q提取码:34hz 该论文主要介绍了数学建模在自然语言处理中的应用,包括文本分析、情感分析和机器翻译等方面。 2010年优秀论文链接:链接:https://pan.baidu.com/s/1m4DUWfkd0O_gmEUWFkJfMA提取码:4zfw 该论文主要介绍了数学建模在推荐系统中的应用,包括协同 Filtering、内容-based Filtering和混合推荐等方面。 2011年优秀论文链接:链接:https://pan.baidu.com/s/1fKLKAeHfJj-NiU7aBzVOSg提取码:7vu7 该论文主要介绍了数学建模在数据挖掘中的应用,包括关联规则挖掘、分类和回归等方面。 2012年优秀论文链接:链接:https://pan.baidu.com/s/1UQaLZEIlEiXnisu5adnIRA提取码:6tee 该论文主要介绍了数学建模在机器人学中的应用,包括机器人运动规划、机器人视觉和机器人 manipulation 等方面。 2013年优秀论文链接:链接:https://pan.baidu.com/s/1iTjAC2el9KJSqx-tMjS07w提取码:8lu7 该论文主要介绍了数学建模在计算生物学中的应用,包括基因表达分析、蛋白质结构预测和基因调控网络等方面。 2014年优秀论文链接:链接:https://pan.baidu.com/s/120zFj_8vOoxETneYCSUqyA提取码:sjp6 该论文主要介绍了数学建模在金融工程中的应用,包括风险管理、投资组合优化和衍生品定价等方面。 2015年优秀论文链接:链接:https://pan.baidu.com/s/1lxI1I3Ul6IYw5xa0IL7sTQ提取码:cbki 该论文主要介绍了数学建模在计算机网络中的应用,包括网络协议设计、网络优化和网络安全等方面。 2016年优秀论文链接:链接:https://pan.baidu.com/s/1NU2mXOLRCChh8ZiIABvngw提取码:cgip 该论文主要介绍了数学建模在机器学习中的应用,包括深度学习、自然语言处理和计算机视觉等方面。 2017年优秀论文链接:链接:https://pan.baidu.com/s/1vkOrBbex5XygL0IIAoEylg提取码:vyt5 该论文主要介绍了数学建模在数据科学中的应用,包括数据挖掘、数据可视化和数据分析等方面。 2018年优秀论文链接:链接:https://pan.baidu.com/s/1lVLhic4apiYiMJGjcjwETg提取码:qsp8 该论文主要介绍了数学建模在人工智能中的应用,包括机器学习、自然语言处理和计算机视觉等方面。 2019年优秀论文链接:链接:https://pan.baidu.com/s/1RTvIBh1e6WIreSMg_jy99w提取码:t0qh 该论文主要介绍了数学建模在数据分析中的应用,包括数据预处理、数据可视化和数据挖掘等方面。 2020年优秀论文链接:链接:https://pan.baidu.com/s/1dzL8XvkquzpTOGxmBZnOig提取码:c919 该论文主要介绍了数学建模在机器学习中的应用,包括监督学习、无监督学习和半监督学习等方面。 2021年优秀论文链接:链接:https://pan.baidu.com/s/1Qb5wAO39HMVycMOoR8yJDg提取码:5yth 该论文主要介绍了数学建模在计算机网络中的应用,包括网络协议设计、网络优化和网络安全等方面。 2022年优秀论文链接:链接:https://pan.baidu.com/s/1zpWz7pS72VvE-LLd2NA1-A提取码:ftbl 该论文主要介绍了数学建模在数据科学中的应用,包括数据挖掘、数据可视化和数据分析等方面。 通过阅读这些优秀论文,研究生可以学习到数学建模的最新方法和技术,提高自己的数学建模能力,并且能够与来自全国各地的研究生交流经验和想法。
2024-09-11 16:37:02 242KB 数学建模
1