我们引入了散射方程的自然概括,该方程将Mandelstam不变量的空间与ℂℙ1上的点的空间连接到高维射影空间ℂℙk −1。标准k = 2 Mandelstam不变量s ab,被推广为 完全对称张量sa 1 a 2…ak $$ {\ mathrm {s}} _ {a_1 {a} _2 \点{a} _k} $$处于“无质量”条件sa 1 a 2…ak − 2 bb = 0 $$ {\ mathrm {s}} _ {a_1 {a} _2 \点{a} _ {k-2} bb} = 0 $$并保持“动量守恒”。 散射方程是通过构造一个势函数并计算其临界点而获得的。 我们主要集中在k = 3的情况下:研究解并定义双联标量幅度的泛化。 我们计算(k,n)=(3,6)的所有“偏交振幅”,并找到与热带格拉斯曼系的直接联系。 这导致了k = 3 Feynman图的概念。 我们还找到了新的运动学空间的具体实现,它与k = 2的自旋-螺旋性形式主义相吻合,并提供了类似于MHV的解析解。
1