基于内容的新闻推荐系统 实现功能 (1)前台功能模块 前台用户可以进行分类查看各模块下的新闻概要列表并显示基于新闻评论量推荐的新闻列表,点击新闻 封面、标题等可直接进入新闻详情页进行阅读、评论,显示基于词语的新闻推荐列表,搜索框输入来搜 索感兴趣的新闻。 (2)后台功能模块后台管理主要包括系统设置、用户列表管理、系统日志以及新闻管理四个模块。系统设置里面包括进行 菜单按钮增删改查的菜单管理、增删改角色信息的角色管理和修改密码;用户信息管理里面包含了一个 详细的用户信息可以对每个人的详细资料进行了增删或者修改操作;系统日志里面包含了一个日志清 单,可以对日志进行增删操作;新闻管理模块里包括进行增删改查分类信息的分类管理、增删改查新闻 的标题、封面等信息的新闻管理以及增删改新闻的任意一条评论的评论管理。 1、技术栈 Java EE 、Mysql8.0 、 Spring SpringMVC Mybatis JavaScript、 EasyUI、 TF-IDF算法 2、推荐算法 基于内容推荐算法: TF-IDF 基本原理:根据用户的浏览行为,获得用户的兴趣偏好度,为用户推荐跟他
2024-06-02 13:31:31 141.36MB java 推荐算法 新闻推荐系统 推荐系统
1
毕业设计资料,计算机毕业设计,php毕业设计,php作业,php学习,php课程
2024-05-14 01:22:06 29.97MB 毕业设计 python 推荐算法
1
导语:本系列文章一共有三篇,分别是 《科普篇 | 推荐系统之矩阵分解模型》 《原理篇 | 推荐系统之矩阵分解模型》 《实践篇 | 推荐系统之矩阵分解模型》 第一篇用一个具体的例子介绍了MF是如何做推荐的。第二篇讲的是MF的数学原理,包括MF模型的目标函数和求解公式的推导等。第三篇回归现实,讲述MF算法在图文推荐中的应用实践。三篇文章由浅入深,各有侧重,希望可以帮助到大家。下文是第一篇——《科普篇 | 推荐系统之矩阵分解模型》,第二篇和第三篇将于后续发布,敬请期待。 矩阵分解(Matrix Factorization, MF)是推荐系统领域里的一种经典且应用广泛的算法。在基于用户行为的推荐算法
2024-05-13 23:18:17 416KB 推荐算法 推荐系统
1
python django javascript bootstrap jquery 协同过滤 推荐算法 机器学习 影片显示、影片分类显示、热门影片排序显示、收藏影片排序显示、时间排序显示、评分排序显示、算法推荐、影片搜索、影片信息管理
2024-05-12 19:33:04 14.44MB python 推荐算法 开发语言 机器学习
1
旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点推荐系统旅游景点
2024-05-05 14:56:07 299KB
1
Python使用技巧,实战应用开发小系统参考资料,源码参考。经测试可运行。 详细介绍了一些Python框架的各种功能和模块,以及如何使用Python进行GUI开发、网络编程和跨平台应用开发等。 适用于初学者和有经验的开发者,能够帮助你快速上手JPython并掌握其高级特性。
2024-05-02 14:36:58 3.72MB python
1
包括摘要,背景意义,论文结构安排,开发技术介绍,需求分析,可行性分析,功能分析,业务流程分析,数据库设计,er图,数据字典,数据流图,详细设计,系统截图,测试,总结,致谢,参考文献。
2024-04-26 20:51:43 3.07MB 论文 毕业论文 计算机毕业论文
1
基于Spark框架的新闻推荐系统的设计与实现
2024-04-26 15:10:34 6.76MB
1
1.本项目采用百度地图API获取步行时间,基于GBDT模型对排队时间进行预测。实现用户自主选择多个目的地,系统输出最佳路线规划的结果,并根据用户的选择给出智能化推荐。 2.项目运行环境:需要Python 3.6及以上配置。 3.项目包括6个模块:数据预处理、客流预测、百度地图API调用、GUI界面设计、路径规划和智能推荐。选用GBDT建立模型,GBDT通过多轮迭代,每轮迭代产生一个弱分类器,每个分类器在上一轮的残差基础上进行训练;采用GBDT模型进行预测,输入当前天气、温度、风力风向、日期(是否是节假日、星期几)和时间即可得出当前客流量;当前客流量在后续预测排队时做一系列操作即可转换为排队时间;通过调用百度地图API模块产生节点之间的步行时间矩阵和客流模型,应用穷举法设计算法,得出最佳路线规划;系统将用户未选择的地点一次分别加入已选择的队列中进行运算,其基本思路与最佳路线规划模块一致,采用穷举法得到所有路线及其总耗时,最后将它们输出,实现智能推荐。 4.博客:https://blog.csdn.net/qq_31136513/article/details/133018114
2024-04-24 18:32:16 10.68MB 机器学习 python GBDT 最优路径
1
本资源是一个基于协同过滤算法商品推荐系统的完整开发源码,包括前端、后端、数据库等部分。该系统主要提供自媒体社区服务,实现自媒体账号管理、内容发布、用户互动等功能,提高自媒体推广效率和用户体验。该系统支持自媒体账号管理、内容发布、用户互动等服务,为自媒体及广大自媒体创作者提供了便捷、高效的自媒体社区平台。 我们提供了详细的部署说明和系统介绍,以帮助使用者更好地使用本资源。在部署说明中,我们详细介绍了如何将本资源部署到本地或远程服务器上,并配置相关环境参数。在系统介绍中,我们对自媒体社区平台的各项功能、前后端框架和技术栈进行了详细介绍和解释,以帮助开发者更好地理解系统的设计思路和功能实现。 对于想要深入学习和了解源码的开发者,我们还提供了源码解释。通过逐行分析源码,我们对系统的技术实现、API设计、业务逻辑等进行深入解读和分析,帮助开发者更好地理解源码和在其基础上进行二次开发,并提供更多开发思路和技巧。 总之,本资源适合对SpringBoot、Vue、自媒体社区平台开发有一定基础的开发者学习和参考。该系统的设计思路、技术实现和业务逻辑等方面都具有高参考价值,为开发
2024-04-14 00:51:29 18.66MB 毕业设计 spring vue
1