利用python-mne进行EEG数据分析——ICA合和去除眼电部分,可进行多个被试循环处理,jupyter notebook打开的文件。
2025-04-19 16:22:24 31KB python 数据分析
1
MATLAB计算全局声发射B值统计系统:逐个统计并输出试件全局b值、相关系数及合函数代码,适用于幅值上下边界整数范围(40-100dB)的快速教学与实用工具,MATLAB计算全局声发射b值及统计:逐一计数、精准输出试件b值、相关系数与合函数代码详解 - 简明注释助力秒学,适用于幅值范围限制的整数(40dB-100dB),matlab计算全局声发射b值-逐个统计, 可输出试件全局的b值、相关系数和合函数,代码带有简明扼要的注释,包教包会,需要的可以直接,秒适用于幅值具有上下边界的整数(如40-100dB)。 ,关键词:MATLAB计算;全局声发射b值;逐个统计;试件全局b值;相关系数;合函数;幅值上下边界;整数(如40-100dB);代码注释。,Matlab计算全局声发射B值统计代码(含注释)
2025-04-08 10:35:39 407KB 正则表达式
1
点云最佳合、最佳迭代以及ICP(Iterative Closest Point)是计算机视觉和三维几何处理中的核心概念,尤其在3D扫描、机器人定位、自动驾驶等领域有着广泛的应用。下面将详细阐述这些知识点。 点云是通过激光雷达、深度相机等设备获取的三维空间中的离散点集合,它描述了物体表面的信息。处理点云数据时,一个关键任务就是进行点云的最佳合,即找到一个理想的几何模型来近似这些点,以便于理解场景结构、去除噪声或进行物体识别。最佳合通常涉及最小化点到模型的距离误差,这可以通过各种数学优化方法实现,如最小二乘法。 最佳迭代是一种优化策略,用于逐步改进模型的合质量。在点云处理中,初始模型可能与实际数据存在较大偏差,通过不断迭代,每次调整模型参数以减小点云与模型之间的差异,最终达到最佳状态。这个过程可能包括多次计算点云到模型的距离、更新模型参数、重新计算距离,直到满足预设的收敛条件或达到最大迭代次数。 ICP算法是实现最佳合和迭代的一个经典方法,由Besl和McKay在1992年提出。ICP的主要思想是通过反复寻找点云中每个点最近的模型点,然后根据这些匹配对调整模型的位置和姿态,直到点云与模型的对应关系达到最佳。具体步骤如下: 1. 初始化:设定一个初始的模型位置和姿态。 2. 配对:计算点云中的每个点到模型的最近邻,形成匹配对。 3. 更新:根据匹配对的残差(即点到模型点的距离),通过最小化位姿变换的代价函数来更新模型的位置和姿态。 4. 重复:再次执行配对和更新步骤,直至达到预设的迭代次数或者匹配误差低于阈值。 ICP算法有多种变体,例如基于概率的GICP(Generalized Iterative Closest Point)、基于协方差的CICP(Consensus-based Iterative Closest Point)以及考虑重采样和聚类的RANSAC-ICP等,这些方法都在不同的场景下提升了ICP的性能和稳定性。 在"libicp"库中,包含了实现ICP算法和其他相关操作的工具和函数。这个库可能提供了点云数据的读取、预处理、点云匹配、模型合等功能,便于开发者在自己的项目中应用ICP算法进行3D点云的处理和分析。 点云最佳合和最佳迭代是通过数学优化手段改善模型对点云数据的合程度,而ICP算法是其中一种有效的方法。通过理解和应用这些技术,我们可以更好地理解和解析三维环境,推动相关领域的技术发展。
2025-04-05 21:32:44 33KB 最佳拟合 最佳迭代
1
根据提供的文件信息,本文将详细解释“opencv椭圆合”的相关知识点,包括椭圆合的基本概念、在OpenCV中的实现方式以及代码的具体解析。 ### 椭圆合基本概念 椭圆合是一种从图像中提取轮廓并用椭圆形状来逼近这些轮廓的技术。这种技术广泛应用于计算机视觉领域,比如物体识别、目标跟踪等场景。通过椭圆合,可以有效地减少噪声的影响,同时简化物体边缘的信息,从而提高后续处理步骤的效率和准确性。 ### OpenCV中的椭圆合实现 OpenCV提供了一套强大的工具集用于图像处理和分析,其中包括了椭圆合的功能。在OpenCV中,椭圆合主要是通过`cvFitEllipse`函数来完成的,该函数可以从一系列点集中合出一个最佳匹配的椭圆。 ### 代码解析 #### 1. 初始化与图像加载 ```c++ const char* filename = "rice.png"; if ((image03 = cvLoadImage(filename, 0)) == 0) { return -1; } ``` 首先定义了一个字符串变量`filename`,用来存放要读取的图片路径。这里假设要处理的图片名为`rice.png`。接着尝试使用`cvLoadImage`函数读取图片,并检查是否成功加载。如果未成功加载,则返回-1。 #### 2. 图像窗口初始化 ```c++ image02 = cvCloneImage(image03); image04 = cvCloneImage(image03); cvNamedWindow("Source", 1); cvNamedWindow("Result", 1); cvShowImage("Source", image03); ``` 这段代码创建了两个新的图像缓冲区`image02`和`image04`,它们与原始图像`image03`具有相同的尺寸和类型。然后创建了两个名为“Source”和“Result”的窗口,并在“Source”窗口中显示了原始图像。 #### 3. 创建阈值滑动条 ```c++ cvCreateTrackbar("Threshold", "Result", &slider_pos, 255, process_image); ``` 这里创建了一个阈值调整滑动条,用户可以通过调整滑动条的位置来改变阈值的大小,进而影响图像处理的效果。滑动条的初始位置设为70,最大值为255。 #### 4. 处理图像函数 ```c++ void process_image(int h) { CvMemStorage* stor; CvSeq* cont; CvBox2D32f* box; CvPoint* PointArray; CvPoint2D32f* PointArray2D32f; stor = cvCreateMemStorage(0); cont = cvCreateSeq(CV_SEQ_ELTYPE_POINT, sizeof(CvSeq), sizeof(CvPoint), stor); cvThreshold(image03, image02, slider_pos, 255, CV_THRESH_BINARY); cvFindContours(image02, stor, &cont, sizeof(CvContour), CV_RETR_LIST, CV_CHAIN_APPROX_NONE, cvPoint(0, 0)); // ... 其他处理逻辑 ... } ``` `process_image`函数是整个程序的核心部分,它负责图像的处理和椭圆合的工作。首先创建了一个内存存储对象`stor`,用于保存轮廓信息。然后对二值化的图像执行轮廓检测,并遍历每一个检测到的轮廓,对其进行椭圆合处理。 #### 5. 椭圆合 ```c++ // 在循环内部 if (count < 6) { continue; } // 以下为椭圆合关键步骤 cvCvtSeqToArray(cont, PointArray, CV_WHOLE_SEQ); for (i = 0; i < count; i++) { PointArray2D32f[i].x = (float)PointArray[i].x; PointArray2D32f[i].y = (float)PointArray[i].y; } cvFitEllipse(PointArray2D32f, count, box); // 绘制椭圆 cvEllipse(image04, center, size, box->angle, 0, 360, CV_RGB(0, 0, 255), 1, CV_AA, 0); ``` 对于每个轮廓,首先将其转换为二维浮点数数组,然后调用`cvFitEllipse`函数进行椭圆合,得到合后的椭圆参数。在`image04`上绘制合后的椭圆。 该代码实现了基于OpenCV的图像椭圆合功能,通过对图像进行二值化处理、轮廓检测以及椭圆合,最终在图像上绘制出合后的椭圆,可用于进一步的目标识别或跟踪等任务。
2024-11-01 13:49:55 3KB 椭圆拟合
1
用opencv231+vs2008编写的一个合椭圆的程序,输入 是二值图,背景是黑色的,还有一个输入是轮廓的面积,能够剔除不需要要轮廓。代码中能测试选定的待合的轮廓(已注释),并把轮廓参数输出并测试。
2024-11-01 13:42:46 2KB opencv 椭圆拟合 轮廓提取
1
利用Halcon算子进行圆合,采取不同合方式,获得效果不同
2024-09-27 15:37:53 125KB halcon
1
CNN-GRU多变量回归预测(Matlab) 1.卷积门控循环单元多输入单输出回归预测,或多维数据合; 2.运行环境Matlab2020b; 3.多输入单输出,数据回归预测; 4.CNN_GRUNN.m为主文件,data为数据; 使用Matlab编写的CNN-GRU多变量回归预测程序,可用于多维数据合和预测。该程序的输入为多个变量,输出为单个变量的回归预测结果。主要文件为CNN_GRUNN.m,其中包含了需要处理的数据。 提取的 1. 卷积门控循环单元(Convolutional Gated Recurrent Unit,CNN-GRU):一种深度学习模型,结合了卷积神经网络(Convolutional Neural Network,CNN)和门控循环单元(Gated Recurrent Unit,GRU)的特性,用于处理时序数据和多维数据的回归预测或合任务。 卷积门控循环单元(CNN-GRU)是深度学习中的一种模型,用于处理具有时序关系或多维结构的数据。相比于传统的循环神经网络(Recurrent Neural Network,RNN),CNN-GRU在处理长期依赖关
2024-09-09 14:11:57 493KB matlab
1
Zernike合是一种在光学领域广泛应用的技术,主要用于分析和描述光学系统中像差的分布。Matlab作为一种强大的数学计算和编程环境,是实现Zernike合的理想工具。在这个压缩包中,提供的Matlab程序可以帮助用户进行Zernike多项式合,从而对光学图像的品质进行评估和优化。 Zernike多项式是一组正交函数,它们可以用来表示在圆形域上的任何连续函数。在光学中,这些多项式被用来量化和矫正透镜系统的像差,如球差、彗差和畸变等。Zernike多项式的优点在于它们能够简洁地描述复杂的像差,并且可以通过简单的系数来调整。 Matlab程序通常包括读取数据、预处理、合和可视化几个步骤。你需要加载包含解包裹数据的文件,这个数据可能是由其他方法(如文中提到的“枝切法解包裹”)生成的。解包裹是将环绕角度的数据转换为线性坐标的过程,以避免数值问题。 在Matlab中,你可以使用内置的函数或者自定义脚本来读取和处理数据。然后,使用Zernike合算法将这些数据合到一系列的Zernike多项式上。这可能涉及到最小二乘法或者其他优化算法,以找到最佳的多项式系数,使得合误差最小。 合完成后,你可以通过绘制Zernike系数的图来理解像差的类型和程度。此外,还可以生成像面的重建图像,以直观地展示合效果。Matlab的图形用户界面(GUI)或脚本命令都可以完成这些可视化任务。 为了深入理解并应用这个程序,你需要熟悉Matlab的基本语法,包括数据读取(如`load`函数)、矩阵操作、优化工具箱(如`lsqcurvefit`函数)以及图形绘制(如`plot`和`surf`函数)。此外,理解Zernike多项式的数学原理以及光学成像的基本概念也是必不可少的。 这个Matlab程序提供了一个实用的工具,帮助光学工程师和研究人员分析像差,优化光学系统的设计。通过学习和使用这个程序,你可以提升自己在Zernike合和光学成像分析方面的技能,为实际的光学系统设计和改进工作打下坚实基础。
2024-08-16 15:58:21 995KB matlab
1
MATLAB用合出的代码绘图任务参数化的高斯混合模型 任务参数化的高斯混合模型(TPGMM)和回归算法的Python实现,其中示例和数据均为txt格式。 TPGMM是高斯混合模型算法,可在参考帧的位置和方向上进行参数化。 它根据参数(框架的位置和方向)调整回归轨迹。 笛卡尔空间中的任何对象或点都可以作为参考框架。 当前方法使用k均值聚类来初始化高斯参数,并使用迭代期望最大化(EM)算法使它们更接近于事实。 合TPGMM之后,将模型与新的框架参数一起应用于高斯回归,以通过时间输入来检索输出特征。 请观看TPGMM和GMR在训练/生成NAO机器人右臂轨迹方面的演示视频。 演示视频 相关论文: Alizadeh,T.,& Saduanov,B. (2017年11月)。 通过在公共环境中演示多个任务来进行机器人编程。 2017年IEEE国际会议(pp.608-613)中的《智能系统的多传感器融合和集成》(MFI)。 IEEE。 Sylvain Calinon教授从研究出版物和MATLAB实现中引用了所有数学,概念和数据: Calinon,S.(2016)任务参数化运动学习和检索智能服务机器
2024-08-07 09:27:31 35.59MB 系统开源
1
基于多项式插值的亚像素边缘坐标合直线示例, VS2015 MFC. 具体原理可参考 https://blog.csdn.net/yx123919804/article/details/103123071
2024-08-01 19:02:03 250KB OpenCV 直线拟合
1