资源包含文件:设计报告word+代码 股票价格预测详细介绍参考:https://biyezuopin.blog.csdn.net/article/details/122463596?spm=1001.2014.3001.5502
2023-05-16 15:49:51 1.03MB Python 循环神经网络 股票价格 价格预测
循环神经网络中的长短期记忆网络和前馈注意力模型相结合,提出一种文本情感分析方案。在基本长短期记忆网络中加入前馈注意力模型,并在TensorFlow深度学习框架下对方案进行了实现。根据准确率、召回率和F1测度等衡量指标,与现有的方案对比表明,提出的方案较传统的机器学习方法和单纯的长短期记忆网络方法有明显的优势。
1
随着网络的飞速发展,微博逐渐成为社交网络中信息传播及信息收集的重要平台,微博转发是微博信息传播的重要途径,研究微博转发问题对微博信息传播、微博营销、舆情监控有着极其重要的意义.影响微博转发的主要因素有:粉丝兴趣与微博文本的相似度,微博营销策略及用户粉丝数量的变化.以往的预测模型没有综合考虑这两方面因素,基于此,提出了一种基于循环神经网络的方法来对微博转发量级进行预测,首先利用SIM-LSTM模型构建微博转发趋势度,然后再利用TF-IDF构建粉丝兴趣和微博文本的相似度,最后通过神经网络模型来预测粉丝是否会转发该微博.实验结果表明本文提出的算法相对于其他预测算法F1评估值提高了近5%.
1
使用RNN循环神经网络实现对爬取的京东评论信息进行情感分析 其中包括源代码、数据集、停用词等
2023-03-22 12:02:45 3.41MB 深度学习 NLP 循环神经网络 文本分类
1
emd的matlab代码详解使用 Apache MXNet 的循环神经网络 在我们之前的笔记本中,我们使用了一种称为卷积神经网络 (CNN) 的深度学习技术来对 和 进行分类。 尽管 CNN 是一种强大的技术,但它无法从音频和文本等输入序列中学习时间特征。 此外,CNN 旨在学习具有固定长度卷积核的空间特征。 这些类型的神经网络称为前馈神经网络。 另一方面,循环神经网络(RNN)是一种可以学习时间特征的神经网络,比前馈神经网络具有更广泛的应用。 在本笔记本中,我们将开发一个循环神经网络,用于预测给定前一个单词或字符的单词或字符的概率。 几乎我们所有人的智能手机上都有一个预测键盘,它可以为超快速打字提示即将出现的单词。 循环神经网络使我们能够构建类似于 SwiftKey 的最先进的预测系统。 我们将首先介绍前馈神经网络的局限性。 接下来,我们将使用前馈神经网络实现一个基本的 RNN,它可以很好地了解 RNN 的工作原理。 之后,我们将使用 MxNet 的 gluon API 设计一个具有 LSTM 和 GRU 层的强大 RNN。 我们将使用这个 RNN 来生成文本。 我们还将讨论以下主题
2023-03-19 17:57:22 1003KB 系统开源
1
 针对高等院校网络舆情分析与危机舆情预警的需求,文中对语义情感分析方法进行了研究。通过结合深度学习中循环神经网络(CNN)和心理学领域的注意力机制模型(Attention),提出了ATRNN网络。该网络使用长短期记忆结构(LSTM)作为RNN隐藏层的基本单元,可以处理任意长度的语义信息。网络通过引入Dropout机制,避免网络训练中的过拟合现象,提升训练效果。为了评估模型效果,文中在NLPCC的开放数据集上进行测试。相较于RNN网络,在正面情绪文本上,准确率、召回率和F1可以提升3.3%,1.7%和2.5%;在负面情绪文本上,可以提升4.4%,4.5%和4.4%。
1
rnn-实验 循环神经网络实验
2023-01-04 21:12:57 161KB Python
1
深度学习利用循环神经网络预测股价走势,包含多种情况,多个例子,还有简要的原理注释说明。
2023-01-04 12:28:00 4.29MB 人工智能 深度学习 循环神经网络 RNN
1
本系列讲解循环神经网络RNN和LSTM的所有知识点,学完本系列课程将对RNN和LSTM的理论知识有清晰的认识,同时能够将理论结合实践应用到工作中。
1
pytotrch搭建单向RNN进行数据拟合
2022-12-20 11:27:26 22.1MB 循环神经网络
1