使用sklearn,numpy来归一化,标准化并且逆转。
2023-10-20 16:24:56 9KB numpy
1
机器学习领域中涉及的数据局预处理,归一化、标准化 。
2023-05-17 17:06:45 19KB 数据归一化
1
LDPC码的一种低复杂度归一化最小和译码算法.pdf
2023-04-12 16:58:49 1.41MB v
1
GETNPVI 计算归一化成对变异指数 (NPVI) 和变异系数 (CV),如 Grabe & Low (2002) 所述。 [NPVI CV] = GETNPVI(IN) 返回归一化成对变异输入语句 IN 的索引 NPVI(M*N 或 M*N*P)和变异系数 CV(M*N 或 M*N*P)。 IN是大小的音节持续时间矩阵M*N 或 M*N*P。 示例:如果 IN = [1 2 3; 3 3 6; 4 6 8; 4 7 7]; 那么 [npvi cv] = getNPVI(IN) 是 npvi = [53.3333; 33.3333; 34.2857; 27.2727]。 cv 是 [0.5000; 0.4330; 0.3333; 0.2887] 示例:如果 IN(:,:,1) = [1 2 3; 3 3 6] 和 IN(:,:,2) = [4 6 8; 4 7 7] 然后 [np
2023-04-12 11:25:22 2KB matlab
1
为了消除光照变化对人脸识别的影响,提出了一种新的基于小波的光照归一化算法。首先对人脸图像进行三级小波分解,获取低频和高频系数;接着对低频成分直方图均衡化,减弱光照的影响,同时对高频成分阈值去噪,再放大高频以增强图像边缘;最后进行逆小波变换,得到归一化后的人脸图像。在Yale B人脸库上的实验结果表明:本文方法可有效减弱光照变化对人脸识别的影响,显著地提高了人脸识别系统的识别率。
2023-03-28 16:32:46 1.04MB 人脸识别 光照 小波分析 光照归一化
1
与一维传递函数相比,多维传递函数可以对体积对象进行更复杂的分类。但 是,当传递函数空间的维数超过 3-D 时,将其可视化和操作是不直观的,这使得 用户交互变得困难。所以针对多维传递函数的设计问题,提出了一种二维聚类方 法。一阶自组织图聚类(SOM)将高维特征数据投影到二维拓扑保留图中。二 阶聚类降低了 SOM 神经元的设计自由度。从大量的 SOM 神经元到可管理的簇。 在提供信息的 SOM 网络的指导下,用户通过选择集群以交互方式发现体素中有 趣的结构,在必要时可视化和修改集群结果。我们的界面跟踪发现的每一个有趣 的结构,这不仅允许用户仔细检查单个结构,还允许他们通过合并被认为重要的 结构来形成最终的可视化效果。 最后用 QT 实现了一个可视化软件,导入体数据,体数据对应的类,对应类 的颜色表和 SOM 拓扑图对应的类这些文件,就可以通过光线投射算法来可视化 对应的三维体数据,因为我们采取了多维传递函数,所以效果比直接光线投射算 法更加好,能分出更加复杂的类,这个可视化软件能应用于海洋学、生物、医学 等学科,比如医学医生可以选取自己感兴趣的类并重点观察自己感兴趣的类。
2023-03-27 22:03:03 11.38MB 体可视化 聚类 SOM 归一化切割
1
此函数对给定矩阵的列进行归一化。 也就是说,它使每列的 l2 范数为 1。
2023-03-21 15:27:16 1KB matlab
1
归一化互熵提供了二维矩阵多样性的度量。 它采用互熵并对感兴趣的变量(代码中的列变量)的边际熵进行归一化。 请参阅屏幕截图或嵌入的公式参考。 该代码用于估算生态系统中的生物多样性,但不限于此类应用。 该代码可用于对变量交互的多样性感兴趣的任何系统。 请参阅为包含两个以上变量而编写的代码的后续行动。
2023-03-20 16:23:00 2KB matlab
1
该代码规范了 64x64 的各个包机的大小。
2023-03-15 20:32:37 2KB matlab
1
地址信息作为空间信息,在各行各业中的应用越来越广泛,通过日常地址和标准地址匹配获取到标准地址的经纬度的应用很广泛,目前在匹配中使用深度学习Bert模型的方法对地址进行分段分级,通过分级信息,对地址济宁精准匹配。
1