峰值电流模式控制简称电流模式控制。它的概念在60年代后期来源于具有原边电流保护功能的单端自激式反激开关电源。在70年代后期才从学术上作深入地建模研究 。直至80年代初期,第一批电流模式控制PWM集成电路(UC3842、UC3846)的出现使得电流模式控制迅速推广应用,主要用于单端及推挽电路。近年来,由于大占空比时所必需的同步不失真斜坡补偿技术实现上的难度及抗噪声性能差,电流模式控制面临着改善性能后的电压模式控制的挑战。
2022-06-11 11:30:46 233KB 开关|稳压
1
研究同步Buck变换器的连续时间模型和离散时间模型,分析了变换器工作于峰值电流模式控制下负载恒定和负载动态变化的闭环系统,应用全状态反馈设计闭环系统的控制策略,使用PSPICE软件对设计电路进行搭建,仿真结果表明,设计的动态跟踪系统不仅能实现闭环极点的任意配置,而且能跟踪参考给定值并实现零稳态误差。最后,用Matlab分析了与负载变化相关的闭环极点灵敏度。
2021-12-28 18:59:09 1.24MB 工程技术 论文
1
为了实现功率因数校正(PFC)功能,单级Boost-Flyback变换器的前级Boost变换器通常工作在断续导电模式(DCM),为了实现高效率,通过控制使后级Flyback变换器工作在临界连续导电模式(CRM)。详细分析了变换器的工作原理和功率因数、中间储能电容电压、开关频率等相关工作特性,并搭建了60 W的实验样机,验证了此变换器能够仅使用1个开关管和1个峰值电流模控制器,同时实现PFC功能和恒定输出电压,且相比DCM-DCM, DCM-CRM Boost-Flyback单级PFC变换器在保持相同功率因数的前提下,提高了变换器的效率。
1
DC-DC开关电源因体积小,重量轻,效率高,性能稳定等优点在电子、电器设备,家电领域得到了广泛应用,进入了快速发展期。DC-DC开关电源采用功率半导体作为开关,通过控制开关的占空比调整输出电压。其控制电路拓扑分为电流模式和电压模式,电流模式控制因动态反应快、补偿电路简化、增益带宽大、输出电感小和易于均流等优点而被广泛应用。电流模式控制又分为峰值电流控制和平均电流控制,峰值电流的优点为:1)暂态闭环响应比较快,对输入电压的变化和输出负载的变化瞬态响应也比较快;2)控制环易于设计;3)具有简单自动的磁平衡功能;4)具有瞬时峰值电流限流功能等。但是峰值电感电流可能会引起系统出现次谐波振荡,许多文献虽
1
行业资料-电子功用-用于分散与降低非易失性储存装置峰值电流与功耗的方法.pdf.zip
简介   在服务器等诸多应用中,电源轨的负载瞬态响应要求越来越严格。此外,由于涉及到复杂的拉普拉斯变换函数计算,对于很多工程师而言,环路补偿设计通常被视为一项困难而又耗时的任务。   本文将首先讨论广泛使用的峰值电流模式(PCM)的连续电流(CCM)  DC-DC转换器的平均小信号数学建模。然后使用了ADI公司的开关电路仿真工具ADIsimPE/SIMPLIS进行仿真,以减少复杂的计算工作。随后,推理出一种简化模型,用于实现更简单、更快速的环路补偿设计和仿真。,我们使用ADP2386EVAL评估板进行环路测试,结果证明环路交越频率、相位裕度、负载瞬态响应仿真结果均与测试
1
对电流型控制而言,内环电流环峰值增益是个很重要的问题,这个峰值增益在开环频率一半的地方,由于调制器的相移可能在电压反馈环开关频率一半的地方产生振荡,这种不稳定性叫做次谐波振荡。
2021-05-17 10:02:48 151KB 峰值电流模式与平均电流模式
1
采用双闭环控制的buck电路仿真模型,电流环采用峰值电流控制。MATLAB2018b版本。
1
双向dc-dc变换器。Bi Buck Boost 电路。电压电流双闭环控制。电流环采用峰值电流控制。MATLAB2018b版本。
2021-04-12 16:00:45 45KB 双向dc-dc变换 峰值电流控制 buck boost
1
峰值电流模式下的BUCK建模 可以用于电源环路控制中的参考
2019-12-21 21:47:03 252KB 电源控制
1