FLEX-4015热电阻采集模块是FLEX-4000系列智能测控模块之一,广泛应用于温度/电阻测量的工业场合,提供了热电阻/电阻信号的采集以及转换,线性处理并转换成线性化的数据值,经RS-485 总线传送到控制器。FLEX-4015具有六个测量通道,支持热电阻的两线制/三线制连接,可连接PT50、PT100、PT200、PT500、PT1000、CU50、CU100、Ni100、Ni120、Ni500、Ni000等多种规格热电阻,也可对电阻进行测量。模块内部各处理单元之间提供了3000V的电气隔离,有效的防止模块因外界高压冲击而损坏,为工厂自动化以及楼宇自动化提供了高效的解决方案。模块主要特点如下: · 六通道模拟量输入 · 可由软件设置模块参数 · 支持多种标准的热电阻,可两线制/三线制连接 · 宽电压范围输入(18-36V DC),功耗低 · RS-485网络连接,支持Modbus RTU/ASCII以及ADAM研华数据采集协议 · 内置看门狗,运行稳定可靠 · 安装方便,标准导轨卡装或螺钉固定 · 宽温度范围运行
1
在电力电子技术领域,整流电路是一种将交流电(AC)转换为直流电(DC)的电路,广泛应用于电源设备、电气传动和其他需要直流电源的场合。单相桥式全控整流电路是其中一种重要的电路拓扑,它使用四个全控型电力电子器件(通常是晶闸管)组成桥式结构,能够实现对输出直流电压的有效控制。在电阻性负载条件下,这种电路能够提供较为平滑的直流输出,并且能够通过调节触发角来控制输出电压的大小,进而影响负载上的功率。 在本研究中,通过对单相桥式全控整流电路进行Simulink仿真,可以更直观地分析电路在不同触发角度下的工作特性。Simulink是MATLAB的一个附加产品,它提供了一个交互式的图形化环境,用于模拟和动态系统分析。使用Simulink进行仿真,不仅可以帮助工程师和学生更好地理解电路的工作原理,还能在实际搭建电路前进行预测和验证。 根据给定的文件信息,仿真模型的输入电压峰值设定为22V,而负载电阻为2欧姆,这样的参数设置能够帮助研究者观察在特定条件下电路的整流效果和输出特性。触发角作为全控整流电路的一个关键参数,它决定了晶闸管导通的时机。在本仿真模型中,触发角分别设置了30度、60度和90度,这三种不同的触发角度分别对应了不同的输出直流电压水平。较小的触发角会在交流输入电压较小时就开始导通晶闸管,导致输出电压较高;而较大的触发角则相反,会延迟导通时间,从而减少输出电压。这样的设计可以帮助研究者深入理解触发角对输出电压波形的影响,以及整流效率的变化。 在进行Simulink仿真的过程中,用户需要确保软件版本符合要求,即最低为2018a版本,最高不超过2024a版本。这是因为不同版本的软件可能在兼容性或功能上存在差异,保证软件版本的一致性可以确保仿真模型的正确运行和结果的一致性。 整个仿真过程通常涉及以下几个步骤:建立电路模型,包括输入电源、桥式整流电路、触发控制逻辑和负载电阻等部分;设置仿真参数,如仿真时间、步长、积分方法等;然后,运行仿真,收集输出电压和电流数据;对仿真结果进行分析,比如通过波形图观察电压和电流的波形变化,计算整流效率、谐波含量等性能指标。 通过此类仿真,不仅可以观察到整流电路在不同工作状态下的表现,还可以对电路设计进行优化。例如,通过调整触发角,可以减少输出直流电压的脉动,提高输出电压的质量;通过改变负载电阻,可以研究电路在不同负载条件下的适应性;此外,还可以对电路的动态响应进行分析,评估在负载突变或电网波动等情况下电路的稳定性和可靠性。 此外,Simulink仿真还可以与其他工具或硬件相结合,实现从模型到实际硬件的快速原型设计。通过MATLAB与硬件接口,可以将仿真的结果直接应用于实际电路,加速产品的开发周期,降低研发成本,提高产品的性能和稳定性。 单相桥式全控整流电路带电阻负载的Simulink仿真研究对于电力电子电路设计与优化具有重要的意义。通过对电路关键参数如触发角度的调整和分析,可以获得更加精准和高效的直流电源,为各种应用场合提供可靠的电力支持。
2025-04-27 17:20:04 258KB simulink
1
IEC 60751-2022: 工业铂电阻温度计和铂温度传感器
2025-04-25 15:26:48 4.33MB 最新标准
1
《51单片机测量电容电阻技术详解》 51单片机是微控制器领域中的经典型号,因其丰富的资源和易用性而被广泛应用于各种电子设备的设计中。本资料包提供了基于51单片机进行电容和电阻测量的全方位教程,包括程序代码、仿真模型、实物图以及设计参数,旨在帮助初学者和工程师深入理解和实践这一技术。 一、51单片机基础 51单片机是Intel公司开发的8051系列微处理器的扩展,它内置8KB ROM、128B RAM、4个8位并行I/O口、两个16位定时器/计数器等硬件资源,适用于嵌入式系统开发。51单片机采用C语言编程,易于上手,且有众多开发工具支持。 二、电容和电阻测量原理 1. 电容测量:通过充放电法测量电容,利用51单片机控制电路对电容充电,记录充电时间,然后根据公式C=Q/Vt(C为电容,Q为电量,V为电压,t为时间)计算电容值。 2. 电阻测量:使用电压-电流法,通过单片机控制恒流源输出,测量电阻两端的电压,根据欧姆定律R=V/I计算电阻值。 三、程序代码 资料包内的程序代码包含了电容和电阻测量的完整流程,包括初始化、数据采集、计算和结果显示。理解这些代码可以帮助读者掌握如何利用51单片机的中断、定时器和A/D转换等功能来实现测量任务。 四、仿真模型 在电路设计阶段,使用电路仿真软件(如 Proteus 或 Multisim)可以验证电路的正确性。通过仿真,可以直观地看到电路工作状态,调整参数,避免实物实验中的反复调试。 五、实物图 实物图展示了实际搭建的电路板和测量设备,包括元器件布局、连线方式等,这对于新手来说是十分有价值的参考,有助于将理论知识转化为实际操作。 六、设计参数 设计参数通常包括元器件选择、电路参数设置等,理解这些参数对于优化测量精度和提高系统稳定性至关重要。例如,选择合适的A/D转换器分辨率、设置合适的采样频率等。 总结,本资料包是一套全面的51单片机电容电阻测量教程,从理论到实践,从代码到实物,全方位覆盖了学习过程。通过学习和实践,不仅可以掌握51单片机的基本应用,还能提升电子测量技术的技能。对于电子爱好者和专业工程师来说,这是一个极具价值的学习资源。
2025-04-23 20:57:09 951KB 51单片机
1
用MATLAB 软件中的simulink建立了绕线式异步电动机转子串电阻分级起动的瞬态仿真模型。其中,起动器的各级起动电阻的数值是根据异步电动机的T型等效电路对应的电流方程,转矩方程,用数值方法通过优化计算确定的:断路器的闭合时间是根据系统的运动方程用数值积分计算确定的。最后通过一个实例对22kW电机的启动过程进行仿真并给出结果。 matlab版本2020b 参考文献:谢可夫,邓建国.绕线式异步电动机转子串电阻分级起动过程的仿真[J].计算机仿真,2003(01):127-129. 在当前的工业自动化和电气工程领域,对于电动机的起动控制有着严格的要求,特别是对于较大功率的电动机,由于其较大的起动电流会对电网造成冲击,并可能对电动机本身造成损害,因此需要采取有效的起动方法。绕线式异步电动机因其结构上的特点,可以通过在转子回路串接电阻来实现平稳的起动过程。本文介绍了使用MATLAB中的Simulink工具建立的绕线式异步电动机转子串电阻分级起动的瞬态仿真模型,这种方法能够帮助工程师在实际应用前模拟电动机的起动过程,对起动电阻的数值进行优化计算,并确定断路器的闭合时间,以确保电动机安全、平稳地启动。 MATLAB作为一个广泛应用于工程计算、算法开发、数据分析和可视化等领域的高性能语言,其集成的Simulink模块化仿真环境为电动机控制系统的设计与仿真提供了便利。Simulink不仅能够模拟电气系统,还能模拟控制系统以及它们之间的相互作用。在本研究中,Simulink被用来建立一个基于T型等效电路的异步电动机模型,其中包括电流方程、转矩方程等关键参数。 对于绕线式异步电动机而言,转子串电阻起动是一种常见的起动方式。通过在转子回路中串联不同的电阻值,可以在启动过程中调整电动机的起动电流和转矩,从而达到降低启动电流、减少对电网的冲击和增加起动转矩的效果。在仿真模型中,起动电阻的数值是通过数值方法优化计算得到的,这一过程确保了电动机的起动过程在满足性能要求的同时,尽可能减少能量损耗。 此外,断路器的闭合时间也是起动过程中的一个关键参数,它决定了电动机起动时的电压、电流波形,以及起动过程的平稳性。在仿真模型中,这一参数是通过数值积分计算确定的,确保了电动机在达到额定转速之前的过渡过程是平滑的。 文章通过实例验证了仿真模型的有效性,对一台22kW的电机进行了起动过程的仿真,并给出了详细的仿真结果。这些结果不仅能够展示电动机在起动过程中的电流、转矩变化情况,还能够对电动机的性能进行评估,为实际操作提供参考。 通过MATLAB和Simulink建立的绕线式异步电动机转子串电阻分级起动的瞬态仿真模型,不仅可以帮助设计者对电动机的起动性能进行预估和优化,还能在实际应用前对整个起动过程进行详细的分析和调整。这种仿真技术的应用,无疑提高了电动机控制系统的可靠性和经济性,对现代电机控制技术的发展起到了积极的推动作用。
2025-04-17 17:14:29 422KB 绕线式异步电机 simulink仿真
1
内容概要:这篇文档详细介绍了基于单片机STC89C52的智能台灯设计与实现。设计目的在于通过对周围光线强度、人体位置和时间等参数的智能感应和反馈调节,帮助用户维持正确坐姿、保护视力并节省能源。文中阐述了各功能模块的工作原理和技术细节,并展示了硬件和软件的具体设计与调试过程。智能矫正坐姿的特性主要体现在通过超声波测距检测人的距离,配合光敏电阻控制灯光亮度,同时具备自动和手动模式供用户选择。在实际应用测试阶段,确认系统满足预期效果,并提出了未来优化方向。 适合人群:对物联网、智能家居感兴趣的工程师,单片机开发爱好者,从事电子产品硬件设计的专业人士,高等院校相关专业师生。 使用场景及目标:适用于需要长期坐在桌子旁工作的个人或群体,如学生、办公室职员等,旨在减少错误姿势引起的视力下降和其他健康风险的同时节约电力。 其他说明:文中涉及的创新之处在于整合了多种类型的传感技术和显示技术,提高了日常生活中台灯使用的智能化水平。同时,也为后续产品迭代指出了方向,包括引入无线连接等功能增强用户体验的可能性。
1
针对海洋中投弃式仪器的快速响应高精度测温要求,提出了一种基于AD7799的热敏电阻测温设计方案。该方案采用24位Δ-∑高精度A/D转换器AD7799为核心部件,以高灵敏度负温度系数热敏电阻为温度传感器,MSP430单片机为MCU,实现了系统的数字化;通过多点校准插值的方法使系统获得测温高精度。经过大量实验证明该系统工作稳定,可靠性高。实验数据表明系统的分辨率超过0.001 ℃,测温精度可达0.02 ℃。
2025-04-16 10:55:43 483KB AD7799 热敏电阻
1
本案例是 电-热-结构 三场耦合,能很好的说明强耦合和弱耦合的解法。 其中,电通过微阻梁产生焦耳热,热反过来影响电阻,电场与温度场彼此影响,故为强耦合,解法是 最常用的强耦合解法:通过材料属性来求解;将微阻梁的电导率选项选为 线性电导率-是温度的函数,将 温度场的热源选为电磁热源,至此电热强耦合处理完毕。 电、热与结构之间是弱耦合,因此只用在多物理场选项选择热膨胀选项即可完成耦合操作!
2025-04-14 19:57:07 2.76MB comsol
1
在电子设计中,MOS管驱动电阻的选择是一个关键步骤,它直接影响到MOS管的开关速度、效率和稳定性。选择合适的驱动电阻对于确保MOS管的正常工作至关重要。以下是关于MOS管驱动电阻选择的详细解释: 理解MOS管的几个关键参数:Qg(栅极电荷)和Ciss(输入电容)。Qg是栅极电荷,它是指将栅极电压从0V提升到开启电压所需注入的电荷量,包括QGS(栅极到源极电荷)和QGD(栅极到漏极电荷)。Ciss则是栅极与源极之间的等效输入电容,它影响着MOS管的开关速度。在选择驱动电阻时,需要考虑这些参数,因为它们决定了MOS管的开关时间和电流需求。 在计算驱动电阻时,可以将输入电容Ciss和驱动电压视为串联电路的一部分,通过电容充放电理论来确定电阻的大小。通常,电阻R与电容C共同决定了MOS管的开关时间。公式为:τ=RC,其中τ是时间常数,表示电容充电到63.2%所需的时间。更小的电阻会加快开关速度,但可能导致更大的驱动电流和功耗。 MOS管的开关过程涉及到四个阶段:关断、开通、电流上升和完全开通。在这个过程中,驱动电阻的选取应该使得MOS管能够在最小化开关损耗的同时,保证良好的开关性能,如低振荡、小过冲和低电磁干扰(EMI)。 MOS管的模型通常包含寄生参数,如栅极线路的电感(LG)和电阻(LG)、栅源电容(C1)、栅漏电容(C2+C4)、栅源电容(C3+C5)和漏源电容(C6)。这些寄生参数在设计驱动电路时都需要考虑,因为它们会影响驱动信号的质量和MOS管的开关特性。 优化栅极驱动设计的目标是在快速开关和低损耗之间找到一个平衡。为了减小MOS管的损耗,需要在QGD阶段提供足够的驱动电流,以迅速降低UDS(漏源电压)。同时,驱动电压一般推荐在10V至12V之间,以确保有足够的尖峰电流,但也不能过高,以免增加不必要的功耗。 在实际应用中,设计师还需要考虑MOS管的平均电容负荷,它不是简单的输入电容Ciss,而是等效输入电容Ceff(Ceff=QG/UGS),这是在UGS从0V升到开启电压UGS(th)期间的等效电容。 选择MOS管驱动电阻是一个综合考虑频率、Qg、Ciss、寄生参数以及系统要求的过程。通过精确计算和深入理解MOS管的工作原理,设计师可以找到最佳的驱动电阻值,从而实现高效的MOS管驱动电路。在进行优化设计时,应特别关注轻载或空载条件,因为这些情况下可能产生较大的振荡,需要确保在这些工况下二极管产生的振动处于可接受范围。
2025-03-31 10:07:59 255KB MOS管驱动
1
场效应晶体管(FET)是一种重要的电子器件,它在现代电子电路中扮演着核心的角色。在场效应晶体管中,栅极(Gate,G)、漏极(Drain,D)和源极(Source,S)是其三个基本电极。栅极与源极之间加电阻是一个在电路设计中常见的操作,这一操作有其特定的原理和作用。 栅极与源极之间加电阻的一个作用是为场效应管提供偏置电压。在电子电路中,偏置电压是必要的,它能确定器件的工作点,使其处于最佳工作状态。在MOS场效应晶体管中,由于栅极与沟道之间是通过一个非常薄的绝缘层相隔,因此栅极几乎没有漏电流,这意味着一旦施加偏置电压后,该偏置电压会很稳定地保持,从而为MOSFET提供稳定的栅源电压。这一电压对于确定晶体管的导通状态是至关重要的。 栅极与源极之间加电阻还起到泻放电阻的作用,起到保护栅极G-源极S。场效应管尤其是金属氧化物半导体场效应晶体管(MOSFET)的栅极对静电非常敏感。在实际使用过程中,器件可能会遇到静电放电(ESD)等现象,这些静电在栅极和源极之间可能会产生高电压,导致栅极绝缘层被击穿,甚至破坏晶体管。通过在栅极与源极之间串入适当的电阻,可以在一定程度上防止静电积累,并且当晶体管关闭时,可以将栅极存储的电荷迅速释放,从而保护了栅极不受静电的损害。 此外,在MOS管工作于开关状态时,栅极的充放电过程可能因为外部电源关闭而中断,这时栅极与源极之间的电容仍然可能带有电荷。这导致了在开关瞬态期间,即使电源已经关闭,栅极的电场可能仍然存在,有可能在再次通电时导致器件在激励信号尚未稳定建立前瞬间导通,产生大电流,这种情况可能会损坏MOS管。为了预防这种情况,需要在栅极和源极之间并接一个泄放电阻(R1),这样在电源关闭后,泄放电阻可以迅速将存储在栅极的电荷释放,避免了栅极电场造成的误动作。 泄放电阻的阻值需要精心选择,既不能太大,以免影响MOSFET的正常开关特性,也不能太小,以免泄放电阻本身消耗过多的功率。通常情况下,这个阻值会设置在几千欧姆到几十千欧姆之间。 需要注意的是,这种通过在栅极与源极之间加电阻来提供保护的方法主要是针对MOS管用作开关应用时。当MOS管用于线性放大等其他应用场景时,并不一定需要设置泄放电路。在不同的应用中,电路设计需要根据器件的特性以及使用环境的不同来决定是否需要加入特定的保护措施。 总而言之,栅极与源极之间加电阻在场效应管的电路设计中是一个重要且实用的技术手段,它不仅可以为场效应管提供稳定的偏置,更关键的是可以有效地保护器件免受静电等外界因素的损害。这一技术手段体现了电子工程设计中对器件保护与稳定性考虑的重视,是电子技术应用中不可忽视的基础知识。
2025-03-31 10:05:20 56KB 电子技术
1