验证正确性并已全面考虑高斯热源及熔覆模型研究——模型框架在科研中直接可用的激光熔覆仿真系统,圆形光斑激光熔覆comsol仿真模型,模型已通过实验验证了正确性,确保模型一定正确可用于科研。 高斯热源,马兰戈尼效应,粘性耗散力等,激光熔覆过程必要项均考虑在模型中。 可根据自己需要调整工艺参数,做完对应实验直接用于lunwen发表。 ,核心关键词:圆形光斑; 激光熔覆; Comsol仿真模型; 实验验证; 高斯热源; 马兰戈尼效应; 粘性耗散力; 工艺参数; 科研发表。,已验证圆形光斑激光熔覆仿真模型:高斯热源与马兰戈尼效应研究
2025-07-10 15:18:39 952KB scss
1
HCIE-Transmission V2.0 实验指导手册 本资源是华为认证 Transmission 系列教程的实验指导手册,版本为 2.0。该手册主要面向华为公司办事处、代表处一线工程师、合作伙伴工程师,以及其他希望学习华为传送网产品技术的人士。 华为认证是华为公司基于“平台+生态”战略,围绕“云-管-端”协同的新ICT技术架构,打造的覆盖ICT全技术领域的认证体系。HCIE-Transmission 认证涵盖传送网业务配置、网络保护改造、网络规划设计、ASON原理、SOM/FD专题、综合故障处理方法以及一些新兴技术专题及解决方案等方面的知识。 本实验指导手册共包含 36 个实验,从设备开局与调测开始,逐一介绍了业务配置、光层ASON、电层 ASON、网络结构改造、网络保护改造以及传送网综合故障处理。通过这些实验,读者可以掌握传送网规划设计、部署、运维及综合故障处理能力,并对传送网的综合架构及新兴技术有很深的理解。 实验 1 至实验 7 涵盖了 MS-OTN 业务配置,包括 OTN 业务、SDH 业务、EoO 业务、EoS业务、MPLS-TP 业务,以及 OSU 业务的配置示例。实验 8 至实验 13 涵盖了光层 ASON 业务的配置,包括如何开启智能特性、如何创建光层ASON 业务以及如何维护智能网络。实验 14 至实验 19 涵盖了电层 ASON 业务的配置,包括如何开启智能特性、如何创建电层 ASON 业务以及如何维护智能网络。 实验 20 至实验 27 涵盖了 OTN 网络结构改造,包括如何对 OTN 网络进行结构改造,如增加 OLA、OLA 站点改造为 OADM 站点、波长无关性、方向无关性,以及网络扩容,如扩充波长或者升级系统为 96 波/120 波等。实验 28 至实验 30 涵盖了 OTN 网络保护改造,包括电层保护改造、光层保护改造,以及保护嵌套。 本实验指导手册为读者提供了一个系统的学习平台,涵盖了传送网业务配置、网络保护改造、网络规划设计、ASON原理、SOM/FD专题、综合故障处理方法以及一些新兴技术专题及解决方案等方面的知识,帮助读者掌握传送网规划设计、部署、运维及综合故障处理能力,并对传送网的综合架构及新兴技术有很深的理解。
2025-07-08 21:09:22 38.37MB
1
内容概要:本文详细介绍了针对激光SLAM中Cartographer算法重定位部分所做的改进措施。作者指出传统Cartographer算法在重定位方面存在效率低下的问题,尤其是在复杂环境中。为此,提出了多项创新性的解决方案,包括但不限于优化搜索策略、改进特征匹配算法以及引入动态子图激活机制等。通过一系列实验验证,改进后的算法显著提升了重定位的速度和准确性,具体表现为在一个五千平方米的车库环境中,重定位时间由原先的平均22.7秒缩短至约3.35秒。此外,文中还分享了一些实用的技术细节,如使用词袋模型进行子图筛选、实施自适应步长调整等。 适合人群:从事机器人导航系统开发的研究人员和技术爱好者,尤其是那些关注SLAM技术和Cartographer算法的人士。 使用场景及目标:适用于希望提高机器人在已知环境中重新定位能力的应用场合,旨在加快机器人恢复正常导航和任务执行的速度,特别是在大型室内或结构化环境中。 其他说明:作者不仅提供了详细的理论解释,还附上了相关源代码供读者深入研究。对于想要深入了解并尝试改进现有SLAM系统的开发者来说,这是一份非常有价值的参考资料。
2025-07-08 09:41:30 3.88MB
1
算法设计与分析 实验4 动态规划法求扔鸡蛋问题
2025-07-07 21:17:28 7KB 动态规划
1
matlab终止以下代码HCP扩散DCM实验 目录 关于 该项目 该项目是我在昆士兰州脑研究所的博士与我的主管玛塔·加里多博士和杰森·马汀利教授合作的第二个实验。 现在已在eLife中发布: McFadyen,J.,Mattingley,JB,和Garrido,MI(2019)。 从枕骨到杏仁核的传入白质通路有助于恐惧识别。 eLife,8,e40766。 我们的研究问题是,“有什么证据表明人体内杏仁核存在结构性皮下途径?” 数据 为了充分回答这个问题,我们利用了免费提供的人类Connectome项目()。 我们使用了S900版本,其中包含大约900名年龄在18至35岁之间的参与者,他们参加了HCP的一系列测试。 所有参与者的数据均在美国圣路易斯的华盛顿大学收集。 S900版本中的数据存储在高性能计算平台上,该平台位于澳大利亚墨尔本的莫纳什大学。 与澳大利亚研究委员会的隶属关系使之成为可能。 由于该项目的计算量很大,因此我们对M3进行了分析,还通过将数据从M3传输到澳大利亚布里斯班昆士兰大学昆士兰大脑研究所的集群计算系统进行了分析。 我们被允许潜在地识别人口统计信息,以便我们可以获得与
2025-07-07 18:20:48 1.58MB 系统开源
1
《C#编程实践:学生成绩管理系统》 本资料由郑阿奇主编,专注于C#的第四部分,主要涵盖C#的综合应用练习,重点在于学生成绩管理系统的开发。这个系统是为大学生课设设计的,旨在让学生通过实际操作,深入理解C#语言的编程原理和软件开发流程。 一、C#基础知识 C#是一种面向对象的编程语言,由微软公司推出,广泛应用于Windows平台上的应用程序开发,尤其是在.NET框架下,C#的强大功能得以充分发挥。其语法简洁明了,支持类、接口、继承、多态等面向对象特性,还具有垃圾回收机制,自动管理内存,降低了程序员的工作负担。 二、数据库交互 学生成绩管理系统涉及到数据库的使用,通常会采用SQL Server或SQLite等关系型数据库存储学生信息和成绩数据。C#可以通过ADO.NET库进行数据库操作,包括连接数据库、执行SQL语句、数据读取与写入等,实现数据的增删改查功能。 三、用户界面设计 系统界面设计是用户与程序交互的关键。C#中的Windows Forms或WPF提供丰富的控件库,如TextBox、Label、DataGridView等,用于构建用户友好的图形界面。开发者需考虑布局、色彩搭配、响应速度等因素,以提高用户体验。 四、业务逻辑处理 在学生成绩管理系统中,业务逻辑包括成绩录入、查询、统计分析等功能。开发者需要编写相应的C#代码,处理这些业务逻辑。例如,定义类来封装学生和成绩的数据结构,编写方法处理成绩的输入验证、计算平均分、排名等功能。 五、实验报告与源码 资料中包含的“学生成绩管理系统.docx”应是实验报告,详细记录了项目的开发过程、遇到的问题及解决方案,有助于学习者理解和复现项目。而“ScoreManagement”可能包含了整个项目的源代码,包括但不限于数据库连接文件、主窗体文件、业务逻辑处理文件等。通过阅读和分析源码,学习者可以深入理解C#编程的实际应用。 六、动手实践 本项目特别强调“自己动手部分”,这意味着学习者不仅要理解理论知识,还要亲自动手编写代码,调试运行,这样才能真正掌握C#编程技能。通过实际操作,学习者能够锻炼解决问题的能力,提高编程水平。 这套资料提供了从理论到实践的全面学习体验,对提升C#编程能力和软件开发能力大有裨益。无论是初学者还是有一定基础的学习者,都能从中获益,深化对C#的理解,提高编程实战技巧。
2025-07-06 16:06:10 6.52MB
1
### 电路教学与Multisim仿真实验:RC动态电路实验 #### 1. 引言 本实验旨在通过Multisim仿真软件进行RC一阶电路的动态特性研究,包括零输入响应、零状态响应以及时间常数τ的测量。通过实验加深对RC电路工作原理的理解,掌握使用Multisim软件搭建电路、进行仿真测试的方法。 #### 2. 实验准备 - **软件准备**:使用NI Multisim 14.0版本作为本次实验的仿真平台。 - **硬件准备**:无需实际的硬件设备,所有实验均在软件中完成。 - **理论基础**: - **RC电路**:RC电路是一种最基本的线性电路之一,由一个电阻R和一个电容C串联组成。 - **零输入响应**:指的是电路在没有外部激励时,仅由电路初始储能产生的响应。 - **零状态响应**:电路在初始状态为零的情况下,仅由外部激励产生的响应。 - **时间常数τ**:用于描述RC电路中电压或电流达到稳态值所需时间的一个重要参数,其值等于RC。 #### 3. 实验步骤与分析 ##### 3.1 RC电路的响应测试 - **实验目的**:测量RC一阶电路的零输入响应、零状态响应曲线和时间常数τ。 - **实验步骤**: 1. **搭建电路**:在Multisim中创建新工程,选择合适的电阻R(10kΩ)和电容C(0.01μF)构建电路模型,如图1所示。 2. **设置激励源**:使用函数信号发生器产生方波信号,振幅设为2V,频率设置为1KHz,以此模拟电路的激励信号。 3. **观测与记录**:使用示波器观测激励信号uS与响应信号uC的变化规律,并记录数据。 ##### 3.2 零输入响应与零状态响应 - **零输入响应**:在电路中初始有储能的情况下,切断外加激励,此时电路的响应称为零输入响应。在本实验中,可通过调节方波的下降沿来模拟开关断开的情况,进而观察零输入响应的变化。 - **零状态响应**:电路在初始状态为零的情况下,由外部激励产生的响应。在本实验中,通过方波的上升沿来模拟开关闭合,即电源接入的瞬间,从而观察零状态响应。 ##### 3.3 时间常数τ的测量 - **理论计算**:τ = RC = 10kΩ × 0.01μF = 0.1ms = 100μs。 - **实际测量**:观察示波器中uC上升至0.632Us所需的时间,记录这一时间值即为时间常数τ。例如,若Us = 4V,则uC上升至2.53V所需的时间即为τ。 ##### 3.4 探究微分电路和积分电路 - **积分电路**:当电路的时间常数τ远大于输入信号的周期T时,电容C两端的电压uC与输入信号uS呈积分关系。通过改变电阻R的值或电容C的值,可以观察到响应曲线的变化。随着τ的增加,响应曲线会呈现出近似三角波的形式。 - **微分电路**:当电路的时间常数τ远小于输入信号的周期T时,电阻两端的电压uR与输入信号uS呈微分关系。同样地,通过改变电阻R的值,可以观察到响应曲线的变化。 #### 4. 总结与讨论 通过对RC一阶电路的零输入响应、零状态响应以及时间常数τ的研究,不仅加深了对电路动态特性的理解,还掌握了使用Multisim软件进行电路设计与仿真的方法。此外,通过对比理论计算与实际测量结果,进一步验证了电路理论的正确性,也为后续深入学习奠定了坚实的基础。 #### 5. 扩展思考 - 在本实验中,我们主要关注了RC电路的基本特性,但对于更复杂的电路结构,例如RLC串联或并联电路,又有哪些不同的特点和应用场景呢? - 如何利用Multisim等仿真软件进一步优化电路设计,提高电路性能? - 在实际应用中,如何考虑非理想元件(如非线性电阻、漏电流等)对电路性能的影响? 通过本次实验的学习,不仅能够掌握基本的电路理论知识,还能培养解决实际问题的能力,为将来从事电子技术领域的研究与开发打下良好的基础。
2025-07-05 22:46:45 695KB
1
GD32F407VET6单片机是由中国公司兆易创新推出的一款高性能32位通用微控制器,其内置丰富外设,广泛应用于工业、汽车电子、消费类等领域。在进行嵌入式系统开发时,实时时钟(RTC)是一个重要的功能模块,它能够在没有外部参考时钟的情况下保持准确的时间计算,对记录事件时间戳、测量时间间隔、控制定时任务等场景至关重要。 RTC实时时钟实验是针对GD32F407VET6单片机进行的一个典型实验,目的是通过编写程序来配置和使用该单片机的实时时钟功能。在实验中,首先需要正确配置RTC模块的时钟源,因为RTC模块需要一个独立的时钟源来维持时间的持续计数。在GD32F407VET6单片机中,RTC时钟源通常来自于一个32.768 kHz的低频晶振,这个晶振频率的选取是因为它是2的15次方,便于通过硬件分频得到1 Hz的时钟脉冲,精确到每秒一个脉冲,用于时钟计数。 接下来,需要初始化RTC模块,包括设置时间(年、月、日、星期、时、分、秒)和日期。一旦RTC模块开始运行,它将持续更新内部的计数器,以便实时追踪当前的日期和时间。在实验中,还应当编写代码读取当前的日期和时间,这通常涉及到对RTC寄存器的读取操作。 此外,RTC模块还具备闹钟功能,可以设置一个或多个闹钟时间点。在这些时间点到来时,可以通过配置的中断或事件标志来触发某些动作,如发送信号、启动测量等。这对于需要周期性执行任务的嵌入式应用尤为重要。 在实验过程中,程序的编写需要关注RTC的配置和操作是否符合实际的硬件设计,比如晶振的选择和连接是否正确,以及编程是否按照芯片的数据手册推荐的方式进行。此外,开发者还需要确保程序能够在单片机上稳定运行,能够通过调试手段找到并修正可能出现的问题,如时间跳变、日期错误等。 在GD32F407VET6单片机的RTC实验中,使用标准的C语言进行编程是常见的做法。开发者会利用Keil MDK-ARM、IAR EWARM等集成开发环境(IDE)进行代码的编写、编译和下载。这些IDE提供了丰富的库函数,使得对硬件的操作更加直观和便捷,同时也有助于代码的维护和升级。 RTC实时时钟实验不仅仅是对GD32F407VET6单片机RTC模块的学习和掌握,也是对嵌入式系统中时间管理的深入理解。通过这样的实验,开发者可以更好地设计出精确、稳定且高效的实时系统。
2025-07-03 19:22:31 428KB
1
《信号与系统实验报告——MATLAB实践探索》 在信息技术高速发展的今天,信号与系统作为电子工程、通信工程以及计算机科学的重要基础课程,其理论知识的掌握与实践操作能力的提升至关重要。MATLAB作为一种强大的数值计算和数据可视化工具,成为了进行信号处理与系统分析的理想平台。本实验报告集合了多个实验,涵盖了信号与系统的多个核心概念,通过MATLAB软件的实践应用,深入浅出地解析了相关理论。 实验一主要涉及的是信号的基本概念和运算。实验中,我们将学习如何在MATLAB中创建各种类型的信号,如正弦波、矩形波、脉冲信号等,并了解如何进行信号的加法、减法、乘法等基本运算。此外,我们还将探讨信号的时间平移、频率平移以及尺度变换等特性,这些是理解信号处理的基础。 实验二至实验四主要关注线性时不变系统(LTI)的分析。这部分实验将引导我们理解系统响应的概念,通过MATLAB的滤波器设计,模拟不同类型的LTI系统对输入信号的响应,包括冲激响应和阶跃响应。同时,我们还会学习如何利用MATLAB进行系统的稳定性分析,以及系统函数H(s)的计算。 实验五至实验七则深入到傅立叶变换及其应用。傅立叶变换是信号分析中的重要工具,实验中我们将学习如何用MATLAB实现离散傅立叶变换(DFT)和快速傅立叶变换(FFT),并观察不同信号的频谱特性。此外,我们还将探讨窗函数在改善频谱分辨率上的作用,以及如何通过滤波器设计来改变信号的频谱特性。 实验八着重于拉普拉斯变换和Z变换的应用,这两者是系统分析的高级工具。通过MATLAB,我们可以直观地理解这些变换如何帮助我们从时域分析过渡到频域分析,从而更好地理解和设计线性系统。 每个实验报告都包含了详细的步骤、代码实现以及运行结果的截图,这不仅有助于学生理解每个实验的过程,还能提高他们独立完成类似任务的能力。MATLAB的图形用户界面和强大的编程功能使得这些复杂的概念变得易于理解和操作。 这份“信号与系统实验报告(含代码)”是一份全面而深入的学习资源,它将理论知识与实际操作紧密结合,为学习者提供了宝贵的实践经验,有助于他们在信号处理和系统分析领域建立起坚实的基础。通过这些实验,学生不仅能巩固课堂所学,还能提升自己的问题解决和编程技能,为未来在相关领域的研究或工作打下坚实的基础。
2025-07-03 13:16:50 3.34MB matlab 信号与系统实验
1