了解操作系统中文件系统的结构和管理过程,掌握经典的算法:混合索引与成组链接法等方法。  模拟混合索引的原理; 假设每个盘块16字节大小,每个盘块号占2字节: 设计支持混合索引算法的索引节点的数据结构;编程模拟实现混合索引算法。 测试:输入一个文件的长度,给出模拟分配占用的磁盘块的情况;输入一个需要访问的地址,计算该地址所在的盘块号。  模拟成组链接法的原理; 设系统具有7个可用磁盘块,每组3块。 编程模拟实现成组链接法。输入请求的磁盘块数,模拟成组链接分配;输入回收的磁盘块号,模拟成组链接回收。 测试:输入请求的磁盘块数,给出分配后的链接情况。输入回收的磁盘块号,给出回收后的链接情况。
2024-12-19 15:19:11 2KB java 操作系统
1
本文实例为大家分享了python实现多层感知器MLP的具体代码,供大家参考,具体内容如下 1、加载必要的库,生成数据集 import math import random import matplotlib.pyplot as plt import numpy as np class moon_data_class(object): def __init__(self,N,d,r,w): self.N=N self.w=w self.d=d self.r=r def sgn(self,x): if(x>0): return 1;
2024-12-18 23:08:06 65KB python python算法 多层感知器
1
1. 通过补充缺失代码,完成一个 5 条指令单周期 CPU 的设计与验证; 2. 通过调试并修正已有实现中的错误,完成一个 20 条指令单周期 CPU 的设计与验证; 3. 在已实现的单周期 CPU 基础上,设计一个不考虑相关引发的冲突的单发射五级 CPU,并进行仿真和验证。 软件:vivado 语言:veilog
2024-12-18 20:00:06 251.43MB
1
Image Processing Analysis and Machine Vision第三版的源代码part 1
2024-12-18 09:17:33 19MB Image Processing Analysis Machine
1
1、文件“600519.csv”可以从网址 “http://quotes.money.163.com/service/chddata.html?code=0600519&start=20010827 &end=20221115&fields=TCLOSE;HIGH;LOW;TOPEN;LCLOSE;CHG;PCHG;TURNOVER;VOT URNOVER;VATURNOVER;TCAP;MCAP”下载 2、根据上面的网址,编写程序自动下载中证白酒指数中 17 支股票的数据(即下载 17 个 csv 文件),每支股票的数据应该是从上市起至 2022 年 11 月 29 日。 3、读取所下载的 17 个 csv 文件中有关股票的数据,将数据保存至一个 sqlite3 的数据 库中(sqlite3 的教程及接口示例可参见https://www.runoob.com/sqlite/sqlitetutorial.html)。 4、使用 DTW(Dynamic Time Warping)算法计算贵州茅台(600519)与其它 16 支股票的距离,并将这 16 个距离打印在屏幕上。
2024-12-17 16:14:44 22KB python 数据分析
1
《基于Hadoop的小型数据分析项目的设计与实现》 在当今大数据时代,数据的处理和分析已经成为企业决策的关键因素。Hadoop作为开源的分布式计算框架,为海量数据的存储和处理提供了强大支持。本项目旨在利用Hadoop技术进行小型数据分析项目的实践,通过这个项目,我们可以深入理解Hadoop的核心组件,包括HDFS(Hadoop Distributed File System)和MapReduce,并学习如何在实际场景中应用这些工具。 Hadoop的核心是分布式文件系统HDFS,它设计的目标是处理大规模的数据集。HDFS将大文件分割成多个块,并将其分布在不同的节点上,提供高容错性和高可用性。在项目实施过程中,我们需要了解HDFS的基本操作,如上传、下载和查看文件,以及如何进行故障恢复和数据备份。 接着,MapReduce是Hadoop用于并行处理大数据的编程模型。它将复杂的计算任务分解为两个阶段:Map阶段和Reduce阶段。Map阶段将数据拆分成键值对,Reduce阶段则对键值对进行聚合,从而得到最终结果。在我们的项目中,我们将编写MapReduce程序来处理数据,例如,进行数据清洗、数据转换和统计分析。 除了HDFS和MapReduce,Hadoop生态系统还包括其他重要组件,如YARN(Yet Another Resource Negotiator)资源调度器,它负责管理和调度集群中的计算资源;HBase,一个分布式的、面向列的数据库,适合实时查询大数据;以及Pig和Hive,这两者提供了高级的数据处理语言,简化了MapReduce的编程。 在项目实施过程中,我们还需要关注以下几个关键点: 1. 数据预处理:数据清洗和格式化是数据分析的第一步,我们需要确保数据的质量和完整性。 2. 数据加载:将数据导入HDFS,这可能涉及到数据的转换和格式调整。 3. 编写MapReduce程序:根据分析需求,设计并实现Map和Reduce函数,进行数据处理。 4. 并行计算:利用Hadoop的并行处理能力,加速计算过程。 5. 结果可视化:将处理后的结果输出,并用图形或报表的形式呈现,以便于理解和解释。 此外,项目实施中还会涉及集群的配置和优化,包括节点设置、网络调优、资源分配等,以确保Hadoop系统的高效运行。对于初学者,理解Hadoop的生态环境和各个组件的协同工作方式是非常重要的。 总结来说,"基于Hadoop的小型数据分析项目"是一个全面了解和掌握大数据处理技术的实践平台。通过这个项目,我们可以深入了解Hadoop的工作原理,提升分布式计算技能,并为后续更复杂的数据分析任务打下坚实的基础。无论是对于学术研究还是企业应用,Hadoop都是处理大数据问题不可或缺的工具。
2024-12-15 19:14:14 137KB 人工智能 hadoop 分布式
1
Python语言可以用来编写桌面宠物程序。桌面宠物是一种可爱的虚拟宠物,可以定制外观,行为,反应,以及它们如何和用户互动。桌面宠物程序可以帮助用户在空闲时间里放松心情,改善情绪,节省时间,还能增加乐趣。 Python的强大功能可以帮助我们实现桌面宠物的功能,并且可以更容易地创建丰富的功能和复杂的交互。 首先,我们可以使用Python来实现宠物的外观和行为。Python提供了一系列的画图API,可以帮助我们创建宠物的外观,以及创建宠物的动画,以及定义宠物的行为。此外,Python还可以帮助我们实现宠物的声音,例如发出可爱的叫声,可以使用Python的内置库来实现。 其次,Python也可以帮助我们实现宠物和用户交互。我们可以使用Python中的GUI库,如Tkinter等,来实现图形用户界面,以便用户可以自由地与宠物交互,例如给宠物提供食物,给宠物玩耍,并且可以更改宠物的外观,行为等。 最后,Python还可以帮助我们编写定制的宠物程序,以满足特定用户的需求。例如,我们可以编写一个宠物程序,可以帮助用户改善他们的自我管理能力,可以帮助用户提高他们的注意力和专注力,或者可以帮助用户
2024-12-13 22:44:25 111KB python
1
python爬虫+爬虫代码+课件
2024-12-13 22:33:12 244B python 爬虫
1
软件质量保证与测试_——_课程实验代码+期末复习资料+期末实验大作业测试报告_software-quality-testing试报告_software-quality-testing.zip
2024-12-13 14:53:19 54.76MB
1
软件质量保证与测试(Software Quality Assurance and Testing)是一门重要的计算机科学课程,旨在教授学生如何确保软件产品的质量,识别和修复软件缺陷,并验证软件的功能和性能是否满足需求。课程内容包括测试的基本概念、测试过程、测试技术和工具、质量保证方法等。下面是该课程相关的资源描述,包括课程实验代码、期末复习资料和期末实验大作业测试报告。 ### 课程实验代码 课程实验代码涵盖了多个实验,旨在通过实际操作帮助学生理解和应用软件测试和质量保证的理论知识。这些实验通常包括: 1. **单元测试(Unit Testing)**:编写测试用例,使用JUnit或类似框架对软件的各个单元进行测试。 2. **集成测试(Integration Testing)**:测试多个单元的组合,确保它们协同工作。 3. **系统测试(System Testing)**:对整个系统进行测试,验证其是否符合指定的需求。 4. **回归测试(Regression Testing)**:在软件更改后进行测试,以确保新代码没有引入新的缺陷。 每个实验代码包含详细的注释和说明,帮助
2024-12-13 14:38:15 96.71MB 课程资源
1