生物医学实体关系抽取是生物医学文本挖掘领域的一项重要任务,它可以自动从生物医学文本中挖掘实 体间的相互关系 目前,生物医学实体关系抽取方法一般只针对某一特定任务(如药物关系,蛋白质交互关系抽取 等)训练单任务模型进行抽取,忽略了多个任务之间的相关性 因此,该文使用基于神经网络的多任务学习方法对 多个生物医学关系抽取任务间的关联性进行了探索 首先构建了全共享模型和私有共享模型,然后在此基础上提 出了一种基于Attention机制的主辅多任务模型 在生物医学领域关系抽取的5个公开数据集上的实验结果表 明,该文的多任务学习方法可以有效地在学习任务之间共享信息,使得任务间互相促进,获得了比单任务方法更好 的关系抽取结果
1