IGS_重塑 该软件是“交互地理切片器”(IGS)可视化工具的简化版本,可让您通过不同的专题图动态地可视化您的身体运动数据。 运行这个程序: 请在以下位置下载最新版本的处理: : 将此存储库中包含的标题为“展开”的文件夹放在处理“库”文件夹中(位于计算机上的处理文件夹中)。 Unfolding 是一个由 Till Nagel 和贡献者开发的精彩地图库(见下面的积分)。 如果您还没有这样做,请访问此链接以了解如何收集、格式化数据并将其加载到此程序中: : 在 Processing 中打开并运行此存储库中 IGS_ReShape 文件夹中的任何文件。 信用/许可信息:本软件根据 GNU 通用公共许可证 2.0 版获得许可。 有关更多详细信息,请参阅此软件随附的 GNU 通用公共许可证。 分发此程序是希望它有用,但不作任何保证; 甚至没有对适销性或针对特定目的的适用性的暗示保
2025-06-11 21:24:01 3.7MB HTML
1
《数字信号处理 门爱东第二版ppt》深入讲解了离散傅里叶变换(DFT)和快速傅里叶变换(FFT)这两个关键概念,它们在数字信号处理领域具有重要地位。离散傅里叶变换是将离散时间信号转换为离散频率信号的方法,而快速傅里叶变换则是一种高效计算DFT的算法。 离散傅里叶变换(DFT)是针对离散时间信号的周期性扩展,用于分析有限长度的信号。DFT定义为一个序列的离散频率分量,通过对序列进行一系列复指数乘积和求和来获得。DFT提供了将离散时间信号转换为离散频率域的手段,这对于分析和处理数字信号非常有用,尤其是在滤波、频谱分析和信号合成等应用中。 快速傅里叶变换(FFT)是DFT的一种优化算法,显著减少了计算量,使得DFT的计算效率大大提高。FFT的基本思想是将大问题分解为小问题,通过分治策略来实现。这使得在实际应用中,如在MATLAB等软件中,可以快速有效地计算DFT,极大地提升了数字信号处理的实时性和实用性。 在课程中,门爱东教授还提到了Z变换和离散傅里叶级数(DFS)。Z变换是分析离散时间信号的另一种方法,它可以将离散序列转换为复变量Z的函数,适用于处理无限长序列。DFS则是周期离散时间信号的傅里叶变换,它的频率是离散的,对应于信号的基频的整数倍。 离散傅里叶变换和快速傅里叶变换是数字信号处理领域的核心内容,因为它们能够提供有限长度序列的傅里叶分析,而且在计算机上易于实现。DFT的计算复杂度是O(N^2),而FFT将其降低到O(N log N),这一改进对于大规模数据处理至关重要。 此外,课程还涵盖了IIR和FIR数字滤波器的设计与实现,这些滤波器经常使用DFT或FFT来进行频率响应分析和设计。有限字长效应也是数字信号处理中的一个重要考虑因素,因为实际计算中总是存在有限的精度,这可能会影响信号处理的结果。 总结来说,《数字信号处理 门爱东第二版ppt》详尽阐述了离散傅里叶变换和快速傅里叶变换的基本原理、计算方法以及它们在数字信号处理中的应用,为学生和专业人士提供了深入理解和实践这些重要工具的资源。
2025-06-11 17:28:35 8.27MB 离散傅里叶变换 快速傅里叶变换
1
内容概要:本文档为通信224班闫梓暄同学撰写的数字信号处理综合实验报告,主要内容涵盖DTMF信号的产生、检测及频谱分析。实验目的是培养利用数字信号处理理论解决实际问题的能力,重点介绍了DTMF信号的原理、产生方法、检测方法以及戈泽尔算法的应用。实验内容包括:①选择按键‘8’,产生DTMF信号并进行滤波处理;②设计并验证基于戈泽尔算法的DTMF信号频谱分析函数;③基于MWORKS平台设计DTMF信号检测程序,判断按键并显示;④扩展实验中模拟电话拨号,生成含噪声的DTMF信号串,并通过滤波和阈值判断恢复按键信息;⑤利用Matlab AppDesigner设计16键电话拨号界面,实现信号产生、检测及结果显示。; 适合人群:具备一定数字信号处理基础,对DTMF信号处理感兴趣的本科生或研究生。; 使用场景及目标:①理解DTMF信号的工作原理及其在电话系统中的应用;②掌握戈泽尔算法用于特定频率成分的DFT计算;③学会使用MWORKS和Matlab进行信号处理实验设计与仿真;④提高在高信噪比环境下信号检测和分析的能力。; 其他说明:实验报告详细记录了实验步骤、代码实现及结果分析,提供了丰富的参考资料,有助于读者深入理解数字信号处理的基本概念和技术。报告强调了编程技巧,如全局变量的使用、ASCII码与字符间的转换等,为后续学习和研究打下坚实基础。
2025-06-11 15:33:20 3.36MB 数字滤波器 Matlab AppDesigner 戈泽尔算法
1
C ++(STK)中的综合工具包 佩里·库克(Perry R. Cook)和加里·斯卡文(Gary P.Scavone),1995--2019年。 C ++(STK)中的综合工具包的此发行版包含以下内容: :STK类头文件 :STK类源文件 :STK音频文件(1通道,16位,big-endian) :STK文档 :STK项目和程序示例 请阅读本文档和底部附近的。 有关编译和安装STK的信息,请参阅此目录中的文件。 内容 原始发行中的Perry注释 概述 C ++(STK)中的综合工具包是一组用C ++编程语言编写的开源音频信号处理和算法综合类。 STK旨在促进音乐合成和音频处理软件的快速开发,重点是跨平台功能,实时控制,易用性和教育示例代码。 综合工具包具有极高的可移植性(大多数类是与平台无关的C ++代码),并且是完全用户可扩展的(包括所有源代码,没有异常库,也没有隐
2025-06-11 10:07:12 1.4MB
1
图形图像处理(photoshop平台)photoshopcs2试题汇编(图像制作员级).pdf
2025-06-10 21:40:50 4.54MB
1
本研究利用Sen+MK方法分析了特定区域内的ET(蒸散发)趋势,重点评估了使用遥感数据的ET空间变化。该方法结合了Sen斜率估算器和Mann-Kendall(MK)检验,为评估长期趋势提供了稳健的框架,同时考虑了时间变化和统计显著性。 主要过程与结果: 1.ET趋势可视化:研究利用ET数据,通过ET-MK和ET趋势图展示了蒸散发在不同区域的空间和时间变化。这些图通过颜色渐变表示不同的ET水平及其趋势。 2.Mann-Kendall检验:应用MK检验来评估ET趋势的统计显著性。检验结果以二元分类图呈现,标明ET变化的显著性,帮助识别出有显著变化的区域。 3.重分类结果:通过重分类处理,将区域根据ET变化的显著性进行分类,从而聚焦于具有显著变化的区域。这一过程确保分析集中在具有实际意义的发现上。 4.最终输出:最终结果以栅格图和png图的形式呈现,支持各种应用,包括政策规划、水资源管理和土地利用变化分析,这些都是基于详细的时空分析。 ------------------------------------------------------------------- 文件夹构造: data文件夹:原始数据,支持分析的基础数据(MOD16A2H ET数据 宁夏部分)。 results文件夹:分析结果与可视化,展示研究成果。 Sen+MK_optimized.py:主分析脚本,适合批量数据处理和自动化分析。 Sen+MK.ipynb:Jupyter Notebook,复现可视化地图。
2025-06-10 20:22:07 19.32MB 遥感数据处理 趋势分析
1
MATLAB是一种广泛应用于科学计算、数据分析以及工程领域的高级编程环境,尤其在数字图像处理领域具有强大的功能。MATLAB中的图像处理工具箱提供了丰富的函数和工具,使得用户可以方便地进行图像的读取、显示、分析、操作以及算法开发。在这个名为“matlab数字图像处理系统”的项目中,开发者构建了一个基于MATLAB的图形用户界面(GUI),整合了多种数字图像处理功能,为用户提供了直观且易用的操作平台。 数字图像处理是通过计算机对图像进行操作和分析的过程,包括图像的预处理、特征提取、分类识别等步骤。在MATLAB中,我们可以利用imread函数读取图像,imshow来显示图像,imadjust调整图像的对比度和亮度,imresize则用于图像的缩放。此外,还有滤波操作如平滑滤波(imfilter配合滤波器hanning、gaussian等)和边缘检测(Canny、Sobel等算法)。 MATLAB GUI是用户与程序交互的重要方式,它允许用户通过图形界面来执行命令,而无需编写代码。在创建GUI时,我们通常会使用GUIDE工具,它提供了图形化的界面设计和组件布局。用户可以通过按钮、菜单、文本框等控件触发不同的处理函数,实现图像处理操作。例如,可以设置一个按钮来执行图像增强,点击后调用对应的MATLAB函数,对选中的图像进行处理。 在图像处理领域,人工智能技术也起着关键作用。例如,机器学习和深度学习算法常用于图像分类和识别。MATLAB提供了集成的深度学习工具箱,可以创建、训练和部署卷积神经网络(CNN)模型。对于图像分类任务,用户可以利用MATLAB训练一个预定义的网络,如VGG或ResNet,并将模型应用到新的图像上进行预测。 在提供的压缩包“matlab数字图像处理系统案例”中,可能包含了各种示例代码和GUI设计,用于演示如何使用MATLAB进行图像处理。这些案例可能涵盖了图像的基本操作、滤波、特征提取、分类等多种应用场景,是学习和理解MATLAB图像处理系统的好材料。通过研究这些案例,用户可以加深对MATLAB图像处理工具箱的理解,并进一步开发自己的图像处理应用程序。 总结来说,MATLAB数字图像处理系统是一个结合了图像处理算法和GUI设计的综合平台,它使得非编程背景的用户也能轻松进行图像处理操作。借助MATLAB的图像处理工具箱和GUI功能,我们可以实现图像的读取、显示、操作以及复杂的分析任务。同时,结合人工智能技术,这个系统还能实现图像分类和识别等功能,为科研和工程应用提供了强大支持。通过深入学习和实践压缩包中的案例,用户可以提升自己的图像处理技能,并扩展到更广泛的领域。
2025-06-10 15:48:24 472KB matlab 图像处理 开发语言 人工智能
1
提出了一种基于 YIG 振荡器的 X 波段 5.1GHz 带宽线性调频连续波信 号源方案, 该方案结构简单、 价格低廉, 缺点是线性度较低, 导致距离分辨率下降. 传统非线性估计方法在低信干噪比或多目标混叠情况下, 估计精度将严重下降甚至失败. 针对这个问题, 本文提出一种基于宽窄带滤波器相结合的二次迭代高阶模 糊函数非线性误差估计与插值重采非线性矫正方法, 该方法在低信干噪比情况下仍能有效估计并矫正发射信号的非线性. 论文分别采用仿真数据、延迟线数据以及轨道 SAR 实测数据对算法进行了验证
2025-06-10 15:04:32 829KB FMCW-SAR 系统设计 信号处理
1
内容概要:本文档展示了如何利用Google Earth Engine(GEE)和geemap库来分析和可视化尼日利亚拉各斯海岸线在2016年和2024年之间的变化。首先初始化Earth Engine并定义感兴趣区域(拉各斯海岸线)。接着定义了一个计算归一化差异水体指数(NDWI)的函数,用于区分水体和其他地物。通过加载和过滤Sentinel-2卫星图像,分别获取2016年和2024年的NDWI图像。然后应用阈值提取水体掩膜,并将这些掩膜叠加到地图上进行可视化,使用不同颜色表示两个年份的水体分布情况。最后,导出变化检测图像到Google Drive,以便进一步分析海岸侵蚀情况。 适合人群:具有基本地理信息系统(GIS)知识和Python编程经验的研究人员或学生。 使用场景及目标:①研究特定区域内的水体变化,如海岸线侵蚀或湖泊面积变化;②学习如何使用Google Earth Engine和geemap库处理遥感数据;③掌握基于NDWI的水体提取方法及其应用。 阅读建议:读者应熟悉Python编程语言以及遥感基础知识,在阅读过程中可以尝试运行代码片段并调整参数以加深理解。同时,可以通过查阅相关文献来补充对NDWI的理解。
2025-06-10 12:37:40 2KB Earth Engine 遥感影像处理 Python
1
内容概要:本文详细介绍了西门子HMI(人机界面)和PLC(可编程逻辑控制器)在工业自动化系统中的协同应用,特别是梯形图在故障诊断中的重要作用。文章探讨了如何通过梯形图快速定位故障点,结合日志记录和报警信息进行深入分析。同时,提出了精简报警条目的方法,如过滤不常用报警信息、分类整合重要报警信息、设置报警阈值和优先级。最后,强调了实现偶发性故障trace可追溯的功能,通过对关键数据变化的记录和历史数据分析,帮助发现潜在故障隐患并采取预防措施。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些负责系统维护和故障排除的专业人士。 使用场景及目标:适用于需要提升工业自动化系统可靠性、稳定性的场合,旨在减少系统停机时间、降低维护成本,提高操作人员的工作效率和准确性。 其他说明:本文提供了实用的技术手段和具体实施步骤,有助于读者更好地理解和应用西门子HMI和PLC的相关技术和工具。
2025-06-10 12:04:20 277KB
1