基于FPGA的AC-AC谐振变换器实现》 文章探讨了一种创新的非接触电能传输系统中的核心技术——AC-AC谐振变换器,它能够实现从低频到高频的直接转换。这种变换器的恒幅控制策略是其核心,通过分析其运行模式,设计了一个基于Field Programmable Gate Array(FPGA)的控制系统,进而通过实验验证了这一方案的可行性。 非接触电能传输系统主要依赖高频交变磁场来传递能量,而FPGA因其可编程性和高效率,成为实现AC-AC谐振变换器控制的理想选择。在能量注入式AC-AC谐振变换器的拓扑结构中,四个MOSFET开关管与反并联二极管及RLC串联谐振网络共同作用,形成能量注入和回馈的双向流动。在不同的输入电压极性下,电路会经历能量注入、自由谐振和能量回馈三种工作模态,以实现电能的高效传输。 为了确保系统在零电流开关(Zero Current Switching,ZCS)模式下运行,并维持输出谐振电流的恒定幅值,文章设计了一个基于FPGA的双闭环控制系统。内环检测谐振电流的过零点,实现ZCS软开关,外环则通过误差比较器调整输出电流,以保持其在设定范围内。这种控制策略确保了系统在不同工作模态下的稳定运行。 具体到硬件实现,文章采用了Altera公司的EP2C5T144C8 FPGA芯片,设计了控制电路板,其中包括三路输入信号处理:50 Hz交流电源过零信号、谐振电流过零信号和误差信号。高速比较器LM319用于检测电流峰值,高速光耦隔离器件6N137则提高了隔离驱动电路的抗干扰能力和响应速度。FPGA根据设定的开关控制逻辑,实时调整MOSFET的状态,从而控制谐振电流峰值。 控制算法流程设计是系统的另一关键部分。通过对谐振电流峰值、电流方向和50 Hz低频信号方向的连续检测,系统能够在不同工作模态间切换,以保持输出电流的恒幅特性。实验结果表明,无论在空载还是10 W负载条件下,基于FPGA的谐振变换器都能有效维持谐振电流峰值的稳定性。 本文深入研究了基于FPGA的AC-AC谐振变换器的实现,通过精确的控制策略和硬件设计,实现了非接触电能传输系统中高效稳定的电流传输。这种方法对于优化能源转换效率,提升非接触电能传输系统的性能具有重要意义。
2024-07-30 05:02:06 272KB FPGA
1
在电子设计领域,FPGA(Field-Programmable Gate Array)是一种可编程逻辑器件,它允许用户根据需求自定义硬件电路。本篇文章将深入探讨基于FPGA的HDMI(High-Definition Multimedia Interface)显示系统的设计与实现,为读者提供一个全面的理解。 一、FPGA在HDMI显示系统中的应用 FPGA的优势在于其灵活性和高性能,使得它成为构建复杂数字系统的理想平台。在HDMI显示系统中,FPGA可以承担多种功能,包括信号接收、解码、时钟恢复、数据分配以及视频处理等。通过利用FPGA的并行处理能力,可以实现高效、实时的视频信号处理,确保高质量的图像输出。 二、HDMI技术简介 HDMI是一种数字接口标准,用于传输未压缩的音频和视频信号,具有高带宽、低延迟、无损失传输等优点。HDMI接口支持多种分辨率,包括高清、超高清甚至4K、8K等,同时还支持多种音频格式,提供一站式解决方案。 三、HDMI显示系统设计 1. 接收端设计:FPGA通过接收HDMI输入信号,首先进行TMDS(Transition Minimized Differential Signaling)解码,将差分信号转换为数字数据。然后,FPGA内部的PLL(Phase-Locked Loop)模块用于恢复时钟,确保数据正确同步。 2. 视频处理:FPGA可以对解码后的视频数据进行各种处理,如色彩空间转换、缩放、去隔行等。这些处理可根据应用需求定制,例如,将RGB信号转换为YCbCr以节省带宽,或者将不同分辨率的信号调整到统一输出。 3. 输出端设计:处理后的视频数据通过FPGA内部的编码器重新打包成TMDS信号,再通过HDMI输出接口发送出去。同时,FPGA还需要处理音频信号,确保与视频同步输出。 四、实现过程与挑战 1. IP核开发:在FPGA设计中,通常需要使用预定义的IP核,如HDMI接收器和发送器。开发或选择合适的IP核是关键步骤,它们需要兼容HDMI规范,并能稳定工作。 2. 时序分析与优化:FPGA设计中时序是关键。需要通过仿真和时序分析确保所有信号都能在正确的时钟周期内完成传输,以满足HDMI协议的严格要求。 3. 调试与测试:实现过程中,必须对系统进行全面的功能和性能测试,包括信号完整性、兼容性以及稳定性。这可能涉及到专用的HDMI测试设备和复杂的调试流程。 五、总结 基于FPGA的HDMI显示系统设计是一项技术密集型任务,涉及硬件描述语言编程、数字信号处理、时序分析等多个方面。通过熟练掌握FPGA技术和HDMI协议,工程师能够构建出高度定制、高性能的显示系统,广泛应用于多媒体设备、嵌入式系统、教育科研等领域。通过不断的实践和学习,开发者可以应对这一领域的各种挑战,实现创新的设计。
2024-07-27 03:35:39 24.67MB fpga hdmi 显示系统
1
基于Intel(Altera)的Quartus II平台FPGA的任意字节数的UART(串口)发送工程源码: 1、详细的仿真TB文件; 2、单字节 起始位1bit,数据位8bit,停止位1bit,无奇偶校验; 3、通过参数化设置,可实现任意字节数的UART发送; 4、详细的说明文件请参考本人博文《https://wuzhikai.blog.csdn.net/article/details/126093301》。
2024-07-21 22:05:26 8.73MB UART FPGA intel
1
提出一种基于FPGA数据转换的多协议转换网关设计方案,阐述了多协议转换网关的功能及优点,描述了该网关的设计思想、硬件结构、软件架构,详述了多协议转换的原理。该网关可以将CAN、RS232、RS485、Zigbee等协议数据与以太网数据相互转换,实现多个设备之间的信息共享。转换模块基于FPGA,提高数据处理和转换效率,解决了不同协议数据转换效率低的难题。
2024-07-09 23:27:27 299KB 行业研究
1
基于FPGA的正弦波发生器】是一种利用现场可编程门阵列(Field-Programmable Gate Array)技术设计的电子系统,用于生成精确、可配置的正弦波信号。这种技术在通信、测试与测量、教育以及许多其他领域有着广泛的应用。FPGA的优势在于其灵活性和高速性能,使得设计者能够根据需求定制硬件逻辑。 在这个项目中,正弦波发生器的核心是FPGA,它包含了大量可编程逻辑单元,如查找表(LUTs)、触发器和I/O资源。设计者通过编写硬件描述语言(HDL,如VHDL或Verilog)来定义电路逻辑,然后使用工具将这些描述转化为FPGA内部的逻辑配置。正弦波的生成通常依赖于数字信号处理(DSP)算法,如查表法或者傅里叶级数展开,以产生连续、平滑的正弦波形。 【PCF8591 D/A转换器】是集成在设计中的关键组件,负责将FPGA产生的数字信号转换为模拟信号,从而输出到外部世界。PCF8591是一款低功耗、四通道模拟输入/单通道模拟输出接口集成电路,具有内置的D/A转换器。通过I2C总线接口,它可以轻松地与微控制器或FPGA通信,将数字数据转化为模拟电压,进而驱动负载,如示波器、放大器或其他电子设备。 在实现过程中,首先需要在FPGA中设计一个时序控制单元,用于生成适当频率的时钟信号,控制D/A转换器的数据传输。然后,建立一个存储正弦波样点的查表,根据所需频率和幅度调整查表参数。当FPGA接收到控制指令后,会按照设定的频率读取查表,并通过PCF8591的D/A转换器输出对应的模拟正弦波信号。 在【描述】中提到的“在开发版完美运行”,可能指的是这个设计已经在某种开发板上成功验证,比如Xilinx的Zynq或 ALTERA的Cyclone系列开发板。开发板通常集成了FPGA、内存、电源管理和调试接口,便于硬件原型设计和测试。 在【压缩包子文件的文件名称列表】:SineSignal_PCF8591_ADC中,我们可以推测这个压缩包可能包含以下内容: 1. VHDL或Verilog源代码文件:实现正弦波发生器和PCF8591接口的逻辑设计。 2. 顶层模块文件:将所有子模块整合在一起,形成完整的FPGA设计。 3. 配置文件:用于加载到FPGA的配置数据。 4. 测试平台文件:可能包括仿真脚本和测试向量,用于验证设计功能。 5. README文档或用户手册:提供项目介绍、使用说明和注意事项。 这个项目展示了如何结合FPGA的并行处理能力和PCF8591的D/A转换功能,构建一个高效、可定制的正弦波发生器。对于学习FPGA设计和数字信号处理的工程师来说,这是一个有价值的实践案例。
2024-07-09 17:03:25 4.95MB FPGA
1
本系统以只能交通系统为目标进行系列的应用开发,主要实现了图像数据的获取和预处理,车牌识别算法的设计,识别结果的图形化展示三个主要功能,形成了一个较为完整的车牌识别系统。在设计初期,我们利用Arm Cortex-M3 DesignStart处理器在可编程逻辑平台上构建片上系统,实现图像采集,图像处理和人机交互功能;之后是在FPGA平台上设计车牌识别的算法,使用流水线结构,实现车牌中字符的识别;最后是将识别的结果传输到LCD屏上进行显示,并通过ESP8266 WIFI模块将数据发送到APP端进行显示。
2024-07-02 20:32:43 154.95MB fpga开发 arm
FPGA 硬件电流环 基于FPGA的永磁同步伺服控制系统的设计,在FPGA实现了伺服电机的矢量控制。 有坐标变换,电流环,速度环,位置环,电机反馈接口,SVPWM。 Verilog 一种基于FPGA的永磁同步伺服控制系统,利用FPGA实现了对伺服电机的矢量控制。这个系统涉及到坐标变换、电流环、速度环、位置环、电机反馈接口以及SVPWM等关键技术。 FPGA(现场可编程门阵列):FPGA是一种可编程逻辑器件,它由大量的逻辑门、存储单元和可编程互连组成。通过在FPGA上配置不同的逻辑电路,可以实现各种功能,包括数字信号处理、控制系统等。 永磁同步伺服控制系统:永磁同步伺服控制系统是一种用于驱动永磁同步电机的控制系统。它通过对电机的电流、速度和位置进行控制,实现对电机的精确控制和定位。 伺服电机矢量控制:伺服电机矢量控制是一种先进的电机控制技术,通过对电机的磁场矢量进行控制,实现对电机的精确控制和定位。它可以提供更高的控制精度和动态性能。 坐标变换:坐标变换是指将一个坐标系中的信号或数据转换到另一个坐标系中。在永磁同步伺服控制系统中,坐标变换常用于将电机的三相电流转换到矢量控制所需
2024-07-01 20:54:59 81KB fpga开发
1
基于FPGA和STM32的相位差测量源码,初学时所写代码,理解有限,仅供参考,能够学习交流,博主工作进入正轨,鲜有时间编写回复博客。
2024-07-01 09:52:44 58.22MB stm32 fpga开发
1
基于FPGA的verilog的电子密码锁设计.rar 基于FPGA的verilog的电子密码锁设计.rar 基于FPGA的verilog的电子密码锁设计.rar
2024-06-22 21:47:38 1.08MB FPGA
1
内容概述:杭电计算机组成原理实验十一,基于FPGA的芯片设计,RISC-V模型机设计(R型、I型、U型基本运算指令、访存指令、转移指令,共37条),连接运算器、存储器、寄存器堆、控制器,包含源代码、仿真代码、管脚配置 开发环境:vivado2018,vivado2022也兼容vivado2018 适合人群:有数字电路基础,正在学习计算机组成原理课程的大学学生,有一定的vivado软件的使用经验
2024-06-19 00:01:56 27.5MB fpga开发 risc-v
1