基于深度学习的乒乓球目标检测与旋转球轨迹预测.pptx
2024-05-08 09:18:26 908KB
1
包含声学模型和语言模型两个部分组成,两个模型都是基于神经网络。 该项目实现了GRU-CTC中文语音识别声音模型,所有代码都在gru_ctc_am.py中,包括: 增加了基于科大讯飞DFCNN的CNN-CTC结构的中文语音识别模型cnn_ctc_am.py,与GRU相比,对网络结构进行了稍加改造。 完全使用DFCNN框架搭建声学模型,稍加改动,将部分卷积层改为inception,使用时频图作为输入,cnn_with_fbank.py。 新增使用pluse版数据集的模型,cnn_with_full.py,建议直接训练这个模型。 语言模型 - language_model文件夹下 新增基于CBHG结构的语言模型language_model\CBHG_lm.py,该模型之前用于谷歌声音合成,移植到该项目中作为基于神经网络的语言模型。
2024-05-07 18:47:06 34.52MB 神经网络 深度学习 语音识别
1
0、功能展示 1、项目原理介绍 2、数据集采集脚本 3、将采集到的动作数据集利用mediapipe库检测手部关键点信息,转换成数据信息保存到本地 4、训练一个效果一般的随机森林分类器 5、使用Kreas训练一个效果好点的全连接层分类器 6、实时手部动作检测效果测试
2024-04-27 12:30:08 64.58MB 深度学习 手势识别
1
资源说明 【1】资源属于对应项目写的论文,写作规范、逻辑紧密、用语专业严谨,内容丰富饱满,可读性强,很适合对该领域的初学者、工程师、在校师生、毕业生等下载使用。 【2】论文适合学习借鉴参考,为您的类似项目开发或写作提供专业知识介绍及思路。 【3】资源非项目源码,如需项目源码,请私信沟通,不Free。 【4】可用于毕业设计、课程设计,切记完全照抄! 【5】鼓励大家下载后仔细研读,多看、多思考!搞懂里面的知识点及实验内容。欢迎交流学习!
1
Python基于深度学习的交通流预测(SAEs、LSTM、GRU) Requirement Python 3.6 Tensorflow-gpu 1.5.0 Keras 2.1.3 scikit-learn 0.19 Train the model Run command below to train the model: python train.py --model model_name You can choose "lstm", "gru" or "saes" as arguments. The .h5 weight file was saved at model folder. Experiment Data are obtained from the Caltrans Performance Measurement System (PeMS). Data are collected in real-time from individual detectors spanning the freeway system across all major metropolitan
2024-04-15 16:40:21 6.42MB LSTM
1
本项目是作者预演的方案,内含源码和数据集。可以作为demo直接使用。
2024-04-14 17:19:30 159KB 机器学习 深度学习
课堂专注度及考试作弊系统、课堂动态点名,情绪识别、表情识别和人脸识别结合 转头(probe)+低头(peep)+传递物品(passing) 课堂专注度+表情识别 侧面的传递物品识别 **人脸识别**:dlib_face_recognition_resnet_model_v1.dat - detection_system/face_recog/weights **人脸对齐**:shape_predictor_68_face_landmarks.dat - detection_system/face_recog/weights **作弊动作分类器**:cheating_detector_rfc_kp.pkl ## 使用 ### 运行setup.py安装必要内容 ## 使用 ### 运行setup.py安装必要内容 ```shell python setup.py build develop ``` [windows上安装scipy1.1.0可能会遇到的问题](https://github.com/MVIG-SJTU/AlphaPose/issues/722) ### 运行
2024-04-11 09:11:37 105.52MB 深度学习 python 毕业设计 人脸识别
1
基于深度学习与词嵌入的情感分析系统设计与实现【毕业设计源码+答辩PPT+论文】 1、研究目的 针对文本进行句子和段落级的情感倾向性分析,利用算法来判断句子的情感色彩。研究的目标在于提高情感分析算法的准确性,不断学习,不断提高和优化算法。在实际数据集上的进行模型训练与调优,并对模型进行简单的封装和部署。 2、研究方法 主要使用基于深度学习的方法,数据集采用论文常用的 IMDB 数据集,旨在提高最终设计模型的准确性。本文尝试吸收其他深度学习模型优点,自己设计了 7 个深度学习模型。本文主要创新点在于,利用模型集成融合里的堆叠法的思想,实现了 3 个树形的传统机器学习算法与 7个深度学习模型的集成。 3、研究结论 在第一个IMDB数据集上经过AUC评分,计算重合的面积, 可以达到95.97%分,排名能达到前15%。 在第二个twitter数据集上经过F1 Score的评分方法,得到了 0.7131280389的分数,排名196/614,30%左右。
2024-04-10 23:58:02 3.79MB 毕业设计 深度学习 情感分析 论文
1
基于深度学习和字符嵌入的细胞穿透肽预测
2024-04-08 23:50:33 1.18MB 研究论文
1
用python3实现基于深度学习的AI人脸识别系统,脚本可以直接运行(包括源码文件、数据文件) 用到技术:Flask + OpenCV-Python + Keras + Sklearn 压缩包中包括:照片样本采集源码、深度学习和训练源码、人脸识别相关源码、Flask实现人脸识别接口等。 通过浏览器上传图片,或者打开摄像头即可识别。
2024-04-08 15:09:37 147.6MB 深度学习 人工智能 python3
1