正交时频与空间 (OTFS) 调制是一项很有前途的技术,可以满足未来移动系统的高多普勒要求。OTFS 调制将信息符号和导频符号编码到二维 (2D) 延迟多普勒 (DD) 域中。接收到的符号在衰落信道中受到多普勒间干扰 (IDI),并在 DD 域中的非整数索引处采样分数多普勒频移。IDI 被视为不可避免的影响,因为分数多普勒频移无法直接从接收到的导频符号中获得。在本文中,我们提供了一种分数多普勒通道的信道估计解决方案。所提出的估计为 DD 域中的 OTFS 输入-输出关系提供了新的见解,即具有较小近似值的 2D 圆形卷积。根据输入-输出关系,我们还提供了一种使用估计信道信息的低复杂度信道均衡方法。我们通过仿真证明了所提出的信道估计和均衡在多个信道中的误差性能。仿真结果表明,在高迁移率环境中,采用所提方法的整体系统性能优于具有理想信道估计的正交频分复用 (OFDM) 和使用伪序列的常规信道估计方法。 代码包内容 此代码包的主要功能是 和 。本文中的图 3 就是使用这些代码生成的。OTFS.mOFDM.m 这些代码分别是 OTFS 和 OFDM 收发器的框架。
2025-04-17 21:42:44 69KB OFDM 信道估计 信道均衡
1
**基于QAM调制的CMA盲均衡算法MATLAB代码详解** 在无线通信领域,正交幅度调制(QAM,Quadrature Amplitude Modulation)是一种常见的数字调制技术,它结合了幅度调制和相位调制,能够在相同的频谱资源下传输更多的数据。CMA(Constant Modulus Algorithm,恒模算法)则是一种盲均衡算法,主要用于数字信号处理,尤其在无线信道中消除多径效应和频率选择性衰落。 **QAM调制的基本原理** QAM调制是通过改变载波的幅度和相位来编码信息。在QAM中,信号被分成两个正交分量,一个代表幅度,另一个代表相位。每个分量可以取多种状态,比如4种、16种、64种等,这些状态对应不同的信息位组合。例如,16-QAM有16种可能的幅度和相位组合,可以同时传输4个二进制位,从而提高了频谱效率。 **CMA盲均衡算法** CMA算法是基于信号恒模约束的自适应算法。在接收端,它尝试调整均衡器权重以最小化信号的模值平方误差,即保持信号的幅度尽可能恒定。这种算法不需要发送端的任何先验信息,因此被称为“盲”均衡算法。CMA算法通过迭代更新均衡器的系数来逐步减小接收信号的失真,最终达到均衡效果。 **MATLAB实现** 在MATLAB环境中,实现QAM调制和CMA盲均衡通常涉及以下步骤: 1. **信号生成**:我们需要生成二进制数据流,并将其映射到QAM星座图上的相应点。MATLAB的`qammod`函数可用于此操作。 2. **信道模拟**:模拟实际通信信道的影响,如衰落、噪声和多径效应。这通常使用加性高斯白噪声(AWGN)模型完成。 3. **均衡器初始化**:设置CMA算法所需的初始均衡器权重。 4. **CMA迭代**:在每一步迭代中,根据当前的均衡器输出计算误差,然后更新权重。CMA算法的更新规则基于信号的模值平方误差。 5. **解调与判决**:均衡后的信号经过解调后,进行硬判决或软判决,恢复原始二进制信息。 在提供的文件`Copy_of_mainqam32CMA.m`中,我们可以看到具体的实现细节。这个脚本可能包含了以上步骤的MATLAB代码,用于生成QAM调制信号,模拟信道,应用CMA算法进行均衡,并且可能包含了错误性能的评估,如误码率(BER)的计算。 **软件/插件相关知识** MATLAB是一款强大的数学计算和编程环境,尤其适合于信号处理和通信系统的建模与仿真。它的内置函数库支持各种调制解调算法和均衡器设计。在进行通信系统的设计和分析时,MATLAB可以帮助我们快速验证理论,进行性能比较,以及优化系统参数。 "基于QAM调制的CMA盲均衡算法MATLAB代码"是一个关于数字通信系统设计的实际案例,涵盖了信号调制、信道建模、盲均衡等多个重要概念,对于理解无线通信系统的工作原理和学习信号处理技术具有很高的实践价值。
2025-04-17 12:29:03 2KB matlab
1
技术进步、资本积累与农村劳动力转移的动态均衡模型,王鑫,陈纪平,刘易斯-拉尼斯-费景汉模型、乔根森模型、托达罗模型、推拉理论等均从不同的角度对农村劳动力转移现象作出了解释,但这些经典理论�
2025-04-14 10:52:25 308KB 首发论文
1
BCGControlBarProEvaluation_35.0 BCGControlBar v35.0实现了一个Visual Studio 2022样式的可视化管理器,在最初发布的Visual Studio 2022中,用户界面与Visual Studio 2019几乎相同,因此官方决定不创建新的视觉主题。但是在几次更新之后,UI已经得到了显著的改进,现在您可以享受这个与Fluent UI标准完全兼容的新视觉主题了!这个主题是由一个新的类CBCGPVisualManagerVS2022(衍生自CBCGPVisualManagerVS2019)实现的,BCGP_VISUAL_THEME枚举器有三个新成员: BCGP_VISUAL_THEME_VS_2022_BLUE BCGP_VISUAL_THEME_VS_2022_LIGHT BCGP_VISUAL_THEME_VS_2022_DARK
2025-04-10 14:09:27 211.66MB visualstudio ui 负载均衡
1
全桥型模块化多电平变流器(MMC)在高压输电系统中的应用越来越广泛,它不仅能应对电网的不平衡和三相不对称问题,还能通过正负序解耦控制实现负序抑制和相间电压均衡控制。在全桥MMC的系统中,桥臂电压均衡控制是关键,它保证了各个模块间的电压分布均匀,提高了系统的稳定性和可靠性。此外,环流抑制和桥臂内模块电压均衡控制也是全桥MMC中重要的技术环节。载波移相调制技术的应用进一步优化了全桥MMC的性能,确保了变流器在复杂电网中的高效运行。 在不平衡电网条件下,全桥型MMC所面临的挑战主要体现在如何处理电网电压的不对称性。三相不对称会导致负序分量的出现,这不仅会影响电力系统的稳定,还可能导致电力电子设备的过载。因此,通过对全桥MMC进行正负序解耦控制,可以有效地抑制负序分量,保护变流器不受不平衡电网的影响。相间电压均衡控制和桥臂电压均衡控制则保证了在电网不平衡情况下,全桥MMC的各个相间和桥臂间的电压能够保持均衡,从而维持整个系统的稳定运行。 环流抑制是全桥MMC中的另一个关键技术,它主要针对模块间的环流进行抑制,以防止环流导致的额外功率损耗和热效应。在全桥MMC中实现桥臂内模块电压均衡控制是实现高效能量转换和提高变流器稳定性的关键。通过对每个模块电压的精确控制,可以确保功率在各模块之间均匀分配,避免个别模块过早损坏,提高变流器的整体性能。 载波移相调制技术是近年来在变流器控制领域中发展起来的一项新技术,它可以提高多电平变流器的输出波形质量,降低谐波含量,有效提升变流器的性能和效率。在全桥型MMC中应用载波移相调制,可以进一步抑制环流,提高系统对电网波动的适应性。 从给出的文件名称来看,文档内容将围绕全桥型MMC在不平衡电网和三相不对称条件下的技术分析进行深入探讨,详细描述全桥MMC在这些条件下的工作原理、控制策略以及优化措施。图片文件可能包含相关的电路图或者系统结构图,有助于直观地理解全桥MMC的工作过程以及相关控制策略的实现方式。文本文件则可能包含更详细的技术分析和理论依据,为全桥MMC的研究和应用提供理论支持和数据参考。 由于文件内容未直接提供,上述内容是基于文件名称列表和给定描述进行的合理推断,旨在尽可能详细地复现相关知识点。在实际应用中,需要结合具体的文档内容来进一步验证和完善这些知识点。
2025-03-26 20:08:46 1.66MB
1
标题“Citrix VDI Handbook (7.6 LTSR)”指的是Citrix XenDesktop 7.6长期服务版本(Long-Term Service Release,LTSR)的虚拟桌面基础设施(VDI)手册。Citrix XenDesktop是一个由Citrix公司开发的企业级虚拟化解决方案,它允许企业通过集中管理的方式为用户提供虚拟桌面和应用程序。 描述提到本手册是7.6 LTSR版本的最佳实践指南,意味着手册中包含了部署和维护XenDesktop 7.6 LTSR环境的最佳方法和实践建议。手册旨在帮助读者正确评估、设计、实施和监控VDI环境。 标签“负载均衡”暗示了文档中可能会探讨如何在XenDesktop环境中实现和维护负载均衡。负载均衡是高可用性和扩展性的关键组成部分,特别是在虚拟桌面环境中,它确保了用户请求的均匀分配和系统的稳定运行。 从提供的部分内容来看,文档可能包括以下几个方面的详细知识点: 1. 组织评估:涵盖定义组织需求、用户分组、应用定义和项目团队的建立等步骤。这一步骤帮助设计者理解企业规模、业务需求、用户特征以及必须支持的应用程序等关键信息。 2. 设计阶段:这个部分将详细阐述VDI架构的五个层次,包括: - 用户层:涉及用户交互界面和用户设备的配置。 - 访问层:包括用户访问虚拟桌面的网关和代理服务器的配置。 - 资源层:涵盖虚拟桌面和应用程序的交付技术。 - 控制层:涉及XenDesktop控制器的管理和策略的设置。 - 硬件层:包含支持VDI环境运行所需的服务器、存储和网络硬件的规划和配置。 3. 监控过程:介绍了支持、操作和监控VDI环境的最佳做法。监控VDI系统是确保性能和用户满意度的关键环节。 文档中还提到了一些关于Citrix公司的信息。Citrix是软件定义工作场所领域的领导者,其解决方案集成了虚拟化技术、移动管理、网络和SaaS解决方案,旨在创建更高效和便捷的工作方式。Citrix在2015年的年收入为32.8亿美元,其解决方案被超过330,000个组织和全球超过一亿用户使用。 文档提醒用户它是在“AS IS”基础上提供的,即不提供任何明示或暗示的保证,包括适销性及适用于特定目的的保证。文档中可能存在技术性或印刷错误,且Citrix保留随时修订文档信息的权利。文档和软件作为Citrix公司的保密信息,只允许根据Beta或技术预览协议的约定使用和复制。 需要注意的是,文档内容是通过OCR技术扫描产生的,可能会存在识别错误或遗漏。因此在使用文档时,应确保理解其真正含义,并对其进行适当的修正和解释,以保持内容的准确性和流畅性。
2024-10-18 19:35:07 2.58MB 负载均衡
1
ANSYS FLUENT官方培训教程完整版
2024-10-12 09:25:39 24.17MB 负载均衡 课程资源
1
锂电池主动均衡simulink仿真 四节电池 基于buckboost(升降压)拓扑 (还有传统电感均衡+开关电容均衡+双向反激均衡+双层准谐振均衡+环形均衡器+cuk+耦合电感)被动均衡电阻式均衡 、分层架构式均衡以及分层式电路均衡,多层次电路,充放电。
2024-10-06 17:39:34 38KB
1
STM32内部Flash的写寿命大约是1万次,假如我们在其Flash中存储数据,每天100次写操作,100天后Flash就无法继续可靠使用了;外部FLASH,比如说W25Q32,擦写次数也只有十万次,在高频率读写下也支撑不了多久, 本文采取了一种非常简单的方法,将Flash的使用寿命无限延长,取决于你为它分配的存储区大小。 主要思想就是将FLASH 分配一块区域给我们的管理机,然后用索引的方式累积写FLASH,中途不进行擦写,在存满整个分区时进行统一擦写,读取根据ID进行读取,并且加上了数据校验,异常回调。主要用于存储系统配置,运行记录等。支持多个存储管理机管理不同的区域.
2024-10-06 17:08:08 4KB stm32 数据结构
1
在进行流体动力学仿真时,Fluent作为一款广泛应用的软件,可能会遇到计算结果不收敛的问题,这将直接影响到模拟的准确性和效率。不收敛的原因多样,包括网格质量、边界条件、模型简化、数值方法、计算机性能、模拟参数以及软件版本等。下面将对这些原因逐一进行详细解释,并提供相应的解决策略。 网格质量对于计算结果的收敛至关重要。如果网格质量差,计算会变得不稳定,导致结果无法收敛。改善网格质量的方法包括使用更精细的网格,确保网格均匀分布,以及优化边界附近的网格结构,以提高计算精度。 边界条件设置的准确性对计算结果有很大影响。不正确的边界条件可能导致流场无法达到平衡状态。解决这个问题的关键是确保边界条件与实际问题匹配,如设定恰当的入口速度、压力或温度等。 模型简化是降低计算复杂性的常用手段,但过度简化可能导致结果失真。在保持计算可接受的复杂度的同时,应尽可能保持模型的物理特性,避免因简化过度而影响收敛。 数值方法的选择也至关重要。不同的问题可能需要不同的求解策略。例如,选择适合问题的求解器(如SIMPLE、PISO等)和湍流模型(如RANS、LES、DNS等),并正确设置相关参数,有助于提高计算的收敛性。 计算机性能不足也可能导致计算不收敛。提升硬件配置,如增加内存、升级CPU,或者利用GPU加速计算,都可以提高计算效率,有助于解决不收敛问题。 模拟参数的设置不合理也会引起不收敛。例如,过大的时间步长或压力迭代次数不足都可能导致计算不稳定。通过调整这些参数,寻找合适的平衡点,可以改善计算过程。 软件版本问题有时会被忽视。如果使用的是存在已知问题的旧版本,升级到最新版或者尝试其他稳定版本可能会解决问题。 除了以上因素,还有可能由其他问题引起不收敛,如初始化问题、数据输入错误等。这时需要对具体问题进行具体分析,找出根源并解决。 为了解决Fluent模拟中的不收敛问题,可以采取以下策略: 1. 仔细检查并优化计算域和边界条件,确保它们与实际问题相匹配。 2. 对于大型计算域,可以尝试逐步缩小计算范围,以降低计算复杂性。 3. 探索和尝试不同的数值方法,找到最适应问题的求解策略。 4. 调整计算参数,如时间步长、压力迭代次数等,找到最佳组合。 5. 提升计算设备的性能,如增加内存、升级硬件,或采用并行计算技术。 6. 充分利用Fluent的官方文档和用户论坛,获取更多的解决思路和技巧。 通过以上措施,通常可以有效地解决Fluent模拟中的不收敛问题,提高计算的精度和稳定性。在实际操作中,可能需要反复试验和调整,才能找到最合适的解决方案。
2024-09-21 11:17:41 114KB 负载均衡
1