A Survey on Heterogeneous Graph Embedding: Methods, Techniques, Applications and Sources
异构图 (HG) 也称为异构信息网络,在现实世界中无处不在;因此,HG 嵌入旨在在低维空间中学习表示,同时保留下游任务(例如,节点/图分类、节点聚类、链接预测)的异构结构和语义,近年来引起了相当大的关注。在本次调查中,我们对 HG 嵌入方法和技术的最新发展进行了全面审查。我们首先介绍了 HG 的基本概念,并讨论了与同构图表示学习相比,HG 嵌入的异质性带来的独特挑战;然后我们根据他们在学习过程中使用的信息系统地调查和分类最先进的 HG 嵌入方法,以解决 HG 异质性带来的挑战。特别是对于每一种有代表性的HG嵌入方法,我们都进行了详细的介绍,并进一步分析了其优缺点;同时,我们还首次探索了不同类型的 HG 嵌入方法在现实工业环境中的变革性和适用性。此外,我们进一步介绍了几个广泛部署的系统,这些系统已经证明了 HG 嵌入技术在解决具有更广泛影响的实际应用问题方面的成功。为了促进该领域的未来研究和应用,我们还总结了开源代码、现有图学习平台和基准数据集。最后,我们探讨了 HG 嵌入的其他问题和挑战,并预测了该领域的未来研究方向。
1