【图像融合】基于matlab小波变换(加权平均法+局域能量+区域方差匹配)图像融合【含Matlab源码 1819期】.md
2024-11-30 17:05:13 9KB
1
道路车辆检测图像数据集_含21种各种不同的车辆类型+3004张高质量真实场景道路车辆图片+已做YOLO格式标注_可用于深度学习算法训练
2024-11-21 15:24:43 116.38MB 数据集 目标检测 车辆检测
1
在计算机视觉领域,数据集是训练和评估深度学习模型的基础。`timm`是一个流行的PyTorch库,它提供了大量的预训练图像模型,方便研究人员和开发者进行实验和应用。本项目"timm(PyTorch图像模型)数据集.zip"包含了一个`timm`库的实现,以及可能的数据集示例或配置文件。 `timm`库由Ross Girshick开发,它不仅集成了众多现有的PyTorch图像模型,如ResNet、VGG、EfficientNet等,还引入了一些最新的研究模型,如DeiT、Mixer等。该库的优势在于其简洁的API,使得模型的选择、加载和微调变得非常容易。例如,你可以通过简单的代码来加载一个预训练的ResNet模型: ```python from timm import create_model model = create_model('resnet50', pretrained=True) ``` 描述中的"计算机视觉数据集"可能指的是使用`timm`库进行训练或验证所需的数据集。常见的计算机视觉数据集有ImageNet、COCO、CIFAR等,这些数据集包含了丰富的图像类别,适合用于图像分类、目标检测、语义分割等任务。在实际应用中,用户需要根据自己的需求将这些数据集适配到`timm`提供的模型上。 `pytorch`标签表明了这个项目是基于PyTorch框架实现的。PyTorch是Facebook开源的一个深度学习库,以其灵活性和易用性而受到广大用户的喜爱。它支持动态计算图,使得模型的构建和调试更加直观。 `pytorch-image-models-master`可能是`timm`库的源代码主分支。这个文件可能包含了模型定义、训练脚本、评估工具等。用户可以查看源码了解模型的具体实现,或者对其进行修改以适应特定的任务需求。 在使用`timm`进行模型训练时,通常需要遵循以下步骤: 1. 安装`timm`库:通过`pip install timm`命令安装。 2. 加载数据集:根据所选数据集的格式,使用相应的库(如`torchvision.datasets`)加载数据,并将其转换为PyTorch DataLoader。 3. 创建模型:使用`timm.create_model`函数选择并创建模型,指定预训练与否。 4. 设置优化器:根据模型结构和任务选择合适的优化器,如SGD、Adam等。 5. 训练模型:迭代训练数据,更新模型参数。 6. 评估模型:在验证集上评估模型性能,根据结果调整模型或训练策略。 对于初学者,理解并掌握`timm`库可以帮助快速上手图像识别任务,对于专业人士,`timm`提供了丰富的模型选择,有助于探索和比较不同模型的性能。通过不断实践和调整,可以在计算机视觉领域取得更好的成果。
2024-11-20 00:17:23 1.26MB pytorch pytorch 数据集
1
内含8000多张图像,利用labelimg对其进行了标注,各类标签数目:789个(表计读数有错);523个 (表计外壳破损);883个   (异物_鸟巢);383个 (操纵箱箱门闭合异常) ;362个 (开关柜已闭合;654个  (盖板破损) ;729个 (异物_挂空悬浮物);1174个(呼吸器_硅胶变色);869个 (表计表盘模糊);410个  (绝缘子破裂);723个 (表计表盘破损);833个(渗漏油_地面油污);567个   (未穿戴安全帽);815个    (未穿工装);106个(呼吸器_硅胶体破损);607个(吸烟) 上传大小有限,此为网盘下载链接
2024-11-14 11:59:46 4KB
1
CSDN Matlab武动乾坤上传的资料均有对应的代码,代码均可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像重建:ASTRA算法图像重建、BP神经网络图像重建、投影法图像重建、小波变换图像分解重建、字典学习KSVD图像低秩重建、主成分分析PCA图像重建、正则化图像去噪重建、离散余弦变换DCT图像重建、卷积神经网络的图像超分辨率重建、SCNN图像重建、SAR图像重建、OSEM重建、超分辨率图像重建、Zernike矩图像重建、Split Bregman图像重建
2024-11-04 20:26:30 10KB matlab
1
本次更新主要内容: 1. 加入“报名照”功能 , 简单轻松制作考试报名照,证件照,只需指定头像裁剪区域,自动按规格缩放和压缩大小,方便快捷!     同时,您可下载手机版的“光影报名照”(扫描二维码即可下载)     直接使用手机拍照制作考试报名照,证件照等电子照片,并且还可一键换底色 2. 通道混合器增加 “互换” 功能, 可红绿,红蓝,绿蓝互换 3. 批处理动作加入“批量扩边“功能,同时扩边的填充部分加入 ”透明度“ 调整功能 4. ”批处理“ 输出设置面板优化,同时输出路径加入”原文件路径“一项 5. 设置中增加另存时是否默认在文件名后加"_副本" 二字 6. 修正多处BUG 如个别EXIF快门速度不对 ,部分图片限制文件大小不对等   〖光影魔术手〗是一个对数码照片画质进行改善及效果处理的软件。简单、易用,不需要任何专业的图像技术,就可以制作出专业胶片摄影的色彩效果。 拥有强大的调图参数拥有自动曝光、数码补光、白平衡、亮度对比度、饱和度、色阶、曲线、色彩平衡等一系列非常丰富的调图参数。最新开发的版本,对UI界面进行全新设计,拥有更好的视觉享受,且操作更流畅,更简单易上手。无需PS,您也能调出完美的光影色彩。 丰富的数码暗房特效还在羡慕他人多变的照片风格吗?没关系,光影魔术手拥有多种丰富的数码暗房特效,如Lomo风格、背景虚化、局部上色、褪色旧相、黑白效果、冷调泛黄等,让您轻松制作出彩的照片风格,特别是反转片效果,光影魔术手最重要的功能之一,可得到专业的胶片效果。 海量精美边框素材 可给照片加上各种精美的边框,轻松制作个性化相册。除了软件精选自带的边框,更可在线即刻下载论坛光影迷们自己制作的优秀边框。 光影论坛提供海量边框下载: 轻松边框 花样边框 撕边边框 多图边框 随心所欲的拼图光影魔术手拥有自由拼图、模板拼图和图片拼接三大模块,为您提供多种拼图模板和照片边框选择。独立的拼图大窗口,将各种美好瞬间集合,与家人和朋友分享。 便捷的文字和水印功能文字水印可随意拖动操作。横排、竖排、发光、描边、阴影、背景等各种效果,让文字加在图像上更加出彩,更可保存为文字模板供下次使用。多种混合模式 水印更加完美,快来试试吧! 图片批量处理功能充分利用cpu的多核,快速批量处理海量图片。您可以批量调整尺寸、加文字、水印、边框等以及各种特效。您还可以将一张图片上的历史操作保存为模板后一键应用到所有图片上,功能强大,对于爱拍照爱处理照片的你,不容错过!   光影魔术手4是一款迅雷公司全新设计开发的产品,希望给广大用户提供一款功能强大,更易上手,操作体验更好的图片处理软件。此前已经陆续发布过几个内测版,现在正式推出了4.1.0Beta版,除了不断完善产品体验。研发团队还不乏幽默感,独创了“雾都模式”功能!   最近网络上热议的北方雾霾天,激发了不少网友的创作欲,“雾都Style”应运而生。不过光魔的研发团队可不是简单的给图片蒙上一层灰色,而是分析了大量真实的雾霾照片,根据此类照片的拍摄成像特点,以及拍摄地对应的PM2.5指数,精心调校得来。(幽默也是技术活!)       相关阅读: 光影魔术手存储空间不足怎么办? 光影魔术手怎么给图片调节阿宝色调效果?
2024-11-01 00:46:17 19.12MB 图形图像-图像处理
1
【CxImage开源代码】是一个专用于图像处理的开源库,其核心是提供了一套功能丰富的API,便于开发者在C++项目中实现各种图像操作。这个开源项目提供的最新版本旨在简化集成过程,用户只需要编译出lib库文件,即可将它无缝接入到自己的工程中。 图像处理是计算机科学中的一个重要领域,广泛应用于图像分析、图像增强、图像合成、图像识别等场景。CxImage库为这些应用提供了底层支持,开发者可以通过它进行像素级别的操作,或者实现更复杂的图像算法。 CxImage库包含以下几个主要模块: 1. **基本图像操作**:如创建、加载、保存图像文件,以及对图像尺寸的调整和旋转。这使得开发者能够轻松地处理不同格式的图片,例如BMP、JPEG、PNG等。 2. **色彩空间转换**:支持RGB、灰度、CMYK等各种色彩模型间的转换,满足了对颜色处理的需求。 3. **图像滤波与增强**:提供了多种滤波器,如均值滤波、高斯滤波,以及直方图均衡化等,以改善图像质量或提取特定特征。 4. **图像绘制**:支持基本图形的绘制,如线条、矩形、椭圆等,还提供了文本渲染功能,可以方便地在图像上添加文字。 5. **图像编码与解码**:内置了多种图像编码解码器,如JPEG、PNG、GIF、TIFF等,确保了与其他图像处理软件的兼容性。 6. **示例与文档**:项目中包含了丰富的示例代码(如demo目录下的文件),帮助开发者快速理解如何使用库中的功能。同时,doc目录下的文档提供了详细的API参考,方便查阅。 7. **扩展功能**:通过`jasper`和`jbig`等子目录,可以看出CxImage还支持JPEG 2000和JBIG等高级图像编码标准,进一步拓宽了其在图像压缩领域的应用。 在实际开发中,使用CxImage库可以大大降低图像处理的复杂性,提升工作效率。只需将源代码导入项目,编译生成静态库或动态库(如`CxImgLib.dsw`文件可能用于设置和管理项目),然后在代码中引用,就可以调用其丰富的接口来实现所需功能。 【CxImage开源代码】是一个强大的图像处理工具,对于需要在C++环境中进行图像处理的开发者来说,是一个非常有价值的资源。它不仅提供了全面的功能,而且易于集成,降低了开发难度,是开发人员进行图像处理工作的好帮手。
2024-10-31 13:52:44 2.52MB CxImage 图像处理
1
Hough 变换(Hough Transform)是一种常用的检测图形的算法。主要原理是通过在参数空间中的投票统计来检测图像中的基本形状。 它通过搜索特定形状(如直线,圆,椭圆等)在参数空间的累加器中的局部最大值来检测形状。Hough 变换主要用于检测图像中的基本形状,如直线,圆等。 用于图像处理领域的经典算法,Hough直线检测、圆检测、椭圆检测的c++算法实现
2024-10-29 10:01:35 96.02MB 图像处理 霍夫变换
1
在计算机视觉领域,OpenCV(开源计算机视觉库)是一个强大的工具,用于处理图像和视频数据。本篇文章将深入探讨如何使用OpenCV来计算图像的灰度直方图,并理解其在图像分析中的重要性。 我们要理解什么是灰度直方图。在图像处理中,灰度图像是一种没有色彩信息,只有亮度级别的图像。每个像素点用一个0到255之间的整数值表示,0代表黑色,255代表白色,中间的值则对应不同的灰度层次。灰度直方图就是这些灰度值在图像中出现频率的可视化表示,它可以帮助我们理解图像的整体亮度分布和局部特征。 OpenCV提供了方便的函数`cv::calcHist`来计算直方图。为了计算灰度图像的直方图,我们需要先将彩色图像转换为灰度图像,这可以通过`cv::cvtColor`函数完成,一般使用`COLOR_BGR2GRAY`作为转换代码。例如: ```cpp cv::Mat colorImage = ...; // 输入彩色图像 cv::Mat grayImage; cv::cvtColor(colorImage, grayImage, cv::COLOR_BGR2GRAY); ``` 接下来,我们可以使用`cv::calcHist`计算灰度直方图: ```cpp cv::Mat histogram; int histSize = 256; // 因为灰度值范围是0到255 float range[] = {0, 256}; // 直方图的边界 const float* histRange = {range}; bool uniform = true, accumulate = false; cv::calcHist(&grayImage, 1, 0, cv::Mat(), histogram, 1, &histSize, &histRange, uniform, accumulate); ``` 这里的参数`histSize`指定了直方图的bin数量,`histRange`定义了灰度值的范围,`uniform`和`accumulate`分别表示是否假设灰度值均匀分布和是否累加直方图。 有了直方图,我们可以通过`cv::normalize`进行归一化,以便于可视化。然后可以使用`cv::imshow`函数展示直方图: ```cpp cv::normalize(histogram, histogram, 0, 1, cv::NORM_MINMAX); cv::Mat histImage(256, 256, CV_8UC3, Scalar(0, 0, 0)); for (int i = 1; i < 256; i++) { int barWidth = cvRound(255 * histogram.at(i - 1) / maxHistogramValue); cv::rectangle(histImage, Point(i - 1, 255), Point(i + barWidth - 1, 0), Scalar(255, 255, 255), -1); } cv::imshow("Gray Histogram", histImage); cv::waitKey(); ``` 通过分析灰度直方图,我们可以获取关于图像的一些重要信息,比如图像的明亮部分、暗部以及是否有明显的峰值或平直段。这在图像增强、对比度调整、阈值分割等任务中非常有用。例如,如果直方图显示图像大部分像素集中在亮部,可能需要降低全局亮度;如果直方图有明显的尖峰,可能表明图像中有特定的灰度值频繁出现。 在提供的"GrayHistImage"文件中,很可能包含了一个示例程序,该程序展示了如何用OpenCV计算并绘制一个图像的灰度直方图。通过阅读和运行这个程序,你可以更好地理解和实践上述理论知识。 理解如何使用OpenCV计算和解析灰度直方图是图像处理中的基本技能,它可以帮助我们洞察图像的特性,并在后续的图像分析和处理任务中发挥关键作用。
2024-10-28 11:30:47 16.2MB opencv 图像灰度直方图
1
水色图像水质评价采用专门针对推向处理的卷积神经网络来进行分类处理
2024-10-24 21:43:25 155.85MB 机器学习 卷积神经网络
1