分析线性回归方程的的待定系数a和判定系数R2的分解步骤目录一、运行jupyter notebook,搭建python环境1、打开Windows终端命令行,输入==jupyter notebook==,打开我们的jupyter工具,如下所示:2、在jupyter的web网页中创建python文件,如下所示:3、现在就可以在jupyter的代码行里面输入我们的代码啦!二、本次内容所需要的表格数据1、本次所需要的数据主要如下三、实验原理四、编辑python代码,分步骤解析线性回归方程1、导入我们所需要的python库2、为自变量和因变量赋值3、求自变量温度的==和==及==平均值==4、求因变量销售
2021-12-10 13:03:50 712KB jupyter NOT notebook
1
通过python程序,采用牛顿法和梯度下降法求解多元一次函数的线性回归方程 梯度下降法原理 梯度就是表示某一函数在该点处的方向导数沿着该方向取得较大值,即函数在当前位置的导数 Δ=df(Ɵ)÷d(Ɵ) 上式中,Ɵ是自变量,f(Ɵ)是关于Ɵ的函数,Ɵ表示梯度 简单来说Δ就是函数相对于自变量Ɵ的求导 梯度下降算法公式: Ɵ=Ɵ0-Ƞ*Δf(Ɵ0) 其中Ƞ是学习因子,由我们自己定义,Ɵ即为数据更新后下一个Ɵ0 f(Ɵ)=f(Ɵ0)+(Ɵ-Ɵ0)*Δf(Ɵ0) 通过该公示不断地进行数据迭代,就可以得到最终的数据 梯度下降法求解二元一次线性回归方程 import pandas as pd import
2021-11-29 19:39:15 100KB python python程序 函数
1
最小二乘法是先将方程自变量与因变量化为系数矩阵X,再求该矩阵的转置矩阵(X1),接着求矩阵X与他的转置矩阵的X1的乘积(X2),然后求X2的逆矩阵。最后整合为系数矩阵W,求解后分别对应截距b、a1、和a2。可见计算一个矩阵的逆是相当耗费时间且复杂的,而且求逆也会存在数值不稳定的情况。 梯度下降法迭代的次数可能会比较多,但是相对来说计算量并不是很大。且其有收敛性保证。故在大数据量的时候,使用梯度下降法比较好。 梯度下降法 import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import
2021-11-11 10:24:37 135KB 回归 多元线性回归 最小二乘法
1
C++实现多元线性回归 可任意指定几元 根据输入的数据矩阵,和给定的回归元数,训练给出回归方程
1
解多元线性方程组,c++代码编写,包含全部源代码。
2021-11-02 00:18:07 211KB c++ 多元线性回归
1
基于jupyter notebook的python编程—–利用梯度下降算法求解多元线性回归方程,并与最小二乘法求解进行精度对比目录一、梯度下降算法的基本原理1、梯度下降算法的基本原理二、题目、表格数据、以及python环境搭建1、多元线性回归分析求解题目2、准备的多元线性回归方程的变量的表格数据3、搭建python环境三、梯度下降算法求解多元线性回归的方程的python代码实现1、导入基本库、数据,并为变量赋值2、定义系数初始值以及学习率和迭代次数3、定义最小二乘法函数-损失函数(代价函数)4、定义梯度下降算法求解线性回归方程系数python函数5、代用函数,进行系数求解,并打印6、画出回归方
2021-10-28 11:04:59 491KB jupyter NOT notebook
1
梯度下降法 梯度下降法的基本思想可以类比为一个下山的过程。 假设这样一个场景:一个人被困在山上,需要从山上下来(找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视度很低;因此,下山的路径就无法确定,必须利用自己周围的信息一步一步地找到下山的路。这个时候,便可利用梯度下降算法来帮助自己下山。怎么做呢,首先以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着下降方向走一步,然后又继续以当前位置为基准,再找最陡峭的地方,再走直到最后到达最低处;同理上山也是如此,只是这时候就变成梯度上升算法了 梯度下降 梯度下降的基本过程就和下山的场景很类似。 首先,我们有一个可微分的函数。这个
2021-09-11 17:26:04 103KB 函数 回归 多元线性回归
1
数据分析基础-广义多元线性回归方程的构建,数据分析基础-广义多元线性回归方程的构建,数据分析基础-广义多元线性回归方程的构建
2021-09-11 10:33:57 753KB 多元线性回归方程
1
(2)回归方程的显著性检验(F检验) 回归方程的显著性检验是对因变量与所有自变量之间的线性关系是否显著的一种假设检验。 回归方程的显著性检验一般采用F检验,利用方差分析的方法进行。
2021-08-24 11:30:00 19.08MB spss
1
最小二乘法求线性回归方程.cpp
2021-07-15 22:03:09 764B 最小二乘法
1