《C++编程思想》是Bjarne Stroustrup所著的经典C++教程,第二版更是深受全球程序员喜爱。本资源包含第一和第二的中文与英文版本,为学习者提供了丰富的学习材料。以下是根据书名和描述所涵盖的知识点详解: **C++语言基础:** 1. **数据类型**:C++支持基本数据类型如int、char、float、double,以及自定义的类类型。 2. **控制结构**:包括条件语句(if、switch)、循环(for、while、do-while)和跳转语句(break、continue)。 3. **函数**:函数定义、参数传递、重载和递归。 4. **数组与指针**:理解指针的概念,指针运算,数组与指针的关系。 **面向对象编程:** 5. **类与对象**:类作为数据和行为的封装,对象作为类的实例。 6. **构造函数与析构函数**:对象生命周期的管理。 7. **继承**:创建新的类来扩展已存在的类。 8. **多态性**:虚函数和抽象类实现接口的多态。 9. **模板**:泛型编程,用于创建类型无关的函数和类。 **C++标准库:** 10. **STL(Standard Template Library)**:容器(如vector、list、set)、迭代器、算法和函数对象。 11. **IO流**:iostream库,用于输入输出操作,如cin和cout。 **C++高级特性:** 12. **异常处理**:使用try、catch和throw进行错误处理。 13. **命名空间**:避免命名冲突,提供更好的代码组织方式。 14. **智能指针**:自动管理内存的指针,如unique_ptr、shared_ptr和weak_ptr。 15. **RAII(Resource Acquisition Is Initialization)**:资源在对象创建时获取并在销毁时释放。 **设计模式:** 16. **设计模式**:书中可能涵盖一些常见的设计模式,如工厂模式、单例模式、观察者模式等,这些模式在实际编程中非常有用。 **实战编程技术:** 17. **软件工程实践**:代码规范、测试、调试和文档编写。 18. **问题解决策略**:如何分析问题、设计解决方案并实现。 通过《C++编程思想》的学习,读者可以全面了解C++语言,掌握面向对象编程思想,并提升软件开发能力。第一通常侧重于语言基础和面向对象编程,第二则深入探讨更高级的主题,如模板和STL。中文和英文版本的结合,既方便了母语为中文的读者,也为英语学习提供了机会。无论是初学者还是有经验的开发者,都能从中受益。
2025-05-15 14:25:27 30.15MB C++编程思想第二版
1
该项目是一个基于PyQT和FaceNet积神经网络的学生人脸识别考勤系统,旨在提供一个实用的教育管理工具。PyQT是一个强大的Python图形用户界面库,它允许开发者创建出美观且功能丰富的应用程序。FaceNet则是一种深度学习模型,专门用于人脸识别,其核心是构建一个将人脸图像映射到欧氏空间中,使得同一人的不同面部图像距离接近,不同人的面部图像距离远的系统。 1. **PyQT框架**: PyQT是Qt库的一个Python绑定,提供了丰富的组件和API,用于创建桌面应用程序。在本项目中,PyQT用于设计和实现用户界面,包括登录界面、考勤记录显示、设置界面等。开发者可以利用PyQT的信号与槽机制来处理用户交互事件,如按钮点击、文本输入等。 2. **FaceNet模型**: FaceNet是基于深度学习的模型,通过训练大量的人脸图像数据,学习到人脸特征表示。在考勤系统中,FaceNet的主要作用是对输入的面部图像进行预处理、特征提取和比对。预处理可能包括灰度转换、尺寸标准化等;特征提取则是通过模型的前向传播过程,将人脸图像映射为高维特征向量;比对则是计算两个特征向量的欧氏距离,判断是否属于同一个人。 3. **积神经网络(CNN)**: 在FaceNet中,积神经网络是核心组成部分。CNN能自动从图像中学习和抽取特征,特别适合处理图像数据。在人脸识别中,多层积层、池化层和全连接层的组合可以捕获面部的局部和全局特征,从而实现精确的识别。 4. **环境配置**: 使用本项目前,需要安装Python编程环境,以及PyQT和FaceNet的相关依赖库,如TensorFlow、OpenCV、Numpy等。这些库可以通过pip命令进行安装,同时,确保计算机上已安装合适的CUDA和CuDNN版本以支持GPU加速。 5. **课程设计与毕设项目**: 这个系统适用于计算机科学及相关专业的课程设计或毕业设计,因为它涵盖了深度学习、GUI开发等多个领域,能够帮助学生实践理论知识,提升综合能力。此外,系统的实际应用场景使其具有较高的实用性价值。 6. **系统流程**: 系统通常包括以下步骤: - 用户登录:验证身份。 - 面部捕捉:通过摄像头实时捕获人脸。 - 人脸识别:使用FaceNet模型进行识别。 - 考勤记录:保存识别结果,生成考勤报表。 - 数据管理:存储和查询学生的考勤记录。 通过这个项目,学习者不仅可以掌握PyQT界面开发,还能深入了解FaceNet和CNN在人脸识别中的应用,同时锻炼解决问题和项目实施的能力。对于想要提升自己在深度学习和GUI开发方面技能的人来说,这是一个非常有价值的实践项目。
1
《验证码识别系统Python》,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称
2025-05-14 15:32:44 2KB 深度学习
1
网络安全_积神经网络_乘法注意力机制_深度学习_入侵检测算法_特征提取_模型优化_基于KDD99和UNSW-NB15数据集_网络流量分析_异常行为识别_多分类任务_机器学习_数据.zip
2025-05-14 12:34:34 1.04MB
1
最优化理论作为计算机科学与工程领域的核心,覆盖了广泛的理论和应用,对于计算机硕士研究生而言,深入掌握该理论不仅能够提升解决实际问题的能力,也是学术研究和工程项目中不可或缺的工具。在吉林大学的计算机硕士研究生课程中,最优化理论作为期末自测的重要内容,考察学生对理论知识的深入理解和灵活应用。 吉林大学提供的最优化理论期末自测AB,根据考点精心设计,难度超过实际考试。这份自测要求学生不仅要理解最优化问题的基本概念,还需要熟悉多种问题类型的解决方案和适用算法。例如,线性规划是解决最优化问题的基础,它通过构造数学模型来描述问题,利用单纯形法或内点法等算法求解。尽管线性规划问题的结构相对简单,但它在工程管理、经济分析等众多领域有着广泛的应用。 非线性规划涉及更复杂的目标函数或约束条件,是线性规划的扩展。在遇到此类问题时,传统的线性规划方法往往无法直接应用,这时就需要运用到梯度下降法、牛顿法等优化算法来求得最优解。这些算法的使用,要求学生不仅要掌握算法本身,还必须具备对问题深刻的理解和分析能力。 动态规划是另一种重要的最优化方法,它通过分解复杂问题为较简单的子问题,并利用这些子问题的解来构造原问题的解,主要应用于那些具有重叠子问题和最优子结构特性的问题。计算机科学中的许多经典问题,如最短路径、背包问题等,都可以通过动态规划来高效求解。它要求学生不仅要掌握动态规划的算法原理,还要能够准确识别和建模可以应用动态规划的问题。 整数规划是线性规划的延伸,它要求问题中的变量取值为整数,这使得问题的解空间大为缩减,从而加大了解的搜索难度。整数规划在诸如资源分配、生产计划等实际问题中非常实用。解决整数规划问题,学生必须掌握分支定界法、割平面法等算法,并具备对问题的敏感度,以选择合适的方法来得到问题的整数最优解。 随机优化问题在不确定性环境中具有广泛的应用,例如在机器学习、金融工程等领域。它通常涉及到随机变量,需要通过概率分析来求解。随机梯度下降法就是随机优化中的一种常见算法,它在大数据和深度学习中经常被用来优化模型的参数。 组合优化则处理离散变量的问题,常见的应用场景包括图论、运筹学等领域。组合优化问题往往具有离散的决策变量,例如在图论中,最小生成树问题、旅行商问题等都是典型的组合优化问题。解决这类问题需要学生熟练掌握各种贪心算法、回溯算法、分支限界法等。 吉林大学的最优化理论自测AB,涵盖了上述理论和方法,旨在全面考察学生对最优化理论的掌握程度和实际应用能力。通过这份试,学生不仅需要展示他们对各种最优化方法的理解,还要能够将理论知识应用于具体的算法设计和复杂度分析中。这种自测不仅有助于学生巩固课堂知识,更能在理论与实践中找到平衡,提升解决实际问题的能力。 为了更好地准备这份自测,学生应深入学习每种优化方法的基本原理和求解技巧,并在实践中不断提高数学建模和问题解决能力。在课后复习中,学生可以参考历年真题和模拟试,如2024年度最优化模拟试题(A)和(B),通过这些练习加深对最优化理论的理解和应用。此外,吉林大学可能会提供相关的辅导课程和讨论班,以帮助学生在学术道路上不断进步,为未来的研究工作打下坚实的基础。通过这种综合性的训练,吉林大学的计算机硕士研究生将能够在最优化理论方面取得扎实的进步,为未来的职业生涯和科研工作奠定坚实的理论基础。
2025-05-13 16:32:01 246KB
1
这段代码实现了一个基于积神经网络(CNN)的糖尿病预测模型,使用PyTorch框架进行训练和评估。代码首先导入必要的库,包括matplotlib用于可视化、numpy和pandas用于数据处理、torch用于深度学习框架搭建,以及sklearn的KFold用于交叉验证。数据从'diabetes.csv'文件中读取,特征和标签分别存储在X和y中,并转换为PyTorch张量。模型的核心是DiabetesCNN类,这是一个1D积神经网络,包含两个积层(分别使用16和32个滤波器,核大小为3)、最大池化层(核大小为2)、两个全连接层(64和2个神经元)以及ReLU激活函数和Dropout层(0.2的丢弃率)用于防止过拟合。模型的前向传播过程依次通过积、池化、展平和全连接层,最终输出二分类结果。 训练过程采用5折交叉验证来评估模型性能,每折训练50个epoch,批量大小为32。训练过程中记录了每个epoch的训练和验证损失及准确率,并保存最佳验证准确率。优化器使用Adam,学习率设为0.001,损失函数为交叉熵损失。训练结束后,代码绘制了训练和验证的损失及准确率曲线,展示模型在不同折上的表现,并计算平均准确率和标准差。结果显示模型在交叉验证中的平均性能,为评估提供了可靠依据。 最后,代码在所有数据上训练最终模型,保存模型参数到'diabetes_cnn_model_final.pth'文件。整个流程展示了从数据加载、模型构建、训练评估到最终模型保存的完整机器学习流程,突出了交叉验证在模型评估中的重要性,以及CNN在结构化数据分类任务中的应用潜力。通过可视化训练曲线,可以直观地观察模型的学习过程和泛化能力,为后续调优提供参考。该实现充分利用了PyTorch的灵活性和GPU加速(如果可用),确保了高效训练。
2025-05-13 13:06:51 352KB
1
RPA实在能A答案
2025-05-12 17:16:33 13.97MB
1
5.3 收放及张力控制 收放及张力控制需要使用 TcPackALv3.0.Lib,此库需要授权并安装: “\BeckhoffDVD_2009\Software\TwinCAT\Supplement\TwinCAT_PackAl\” 此库既可用于浮动辊也可用于张力传感器,但不适用于主轴频繁起停且主从轴之间没有缓 冲区间的场合。 5.3.1 功能块 PS_DancerControl 此功能块控制从轴跟随 Dancer 耦合的主轴运动。主轴可以是实际的运动轴,也可以是虚拟 轴。功能块通过 Dancer-PID 调节主轴和从轴之间的齿轮比实现从轴到主轴的耦合。 提示: 此功能块的目的是,依据某一 Dancer 位置,产生一个恒定表面速度(外设速度)相对于主 轴速度的调节量。主轴和从轴之间的张力可以表示为一个位置信号(即 Dancer 位置信号)。 功能块执行的每个周期都会扫描实际张力值,而其它输入信号则仅在 Enable 信号为 True 的第一个周期读取。
2025-05-12 15:52:23 11.37MB Beckhoff 培训教材 TwinCAT
1
深度积神经网络.ppt
2025-05-12 15:31:43 24.48MB
1
实现有限长序列的基本运算(包括:加法、乘法、累加、移位、翻褶、抽取、插值、 积和),并以 GUI 的形式将这些运算整合起来,使用者可通过向 GUI 输入任意有限长序列得 到对应的运算结果。 加法:对两个序列中对应位置的元素进行相加,得到一个新的序列,要求两个序列的长度相同。 乘法:对两个序列中对应位置的元素进行相乘,得到一个新的序列,要求两个序列的长度相同。 累加:对序列中的元素进行累加操作,即将每个元素与其前面所有元素的和依次相加,得到一个新的序列。 移位:将序列中的元素按照指定的步长向左或向右移动,空出的位置用零或者其他指定的值填充。 翻褶:将序列中的元素顺序完全颠倒,即首尾对调。 抽取:从序列中按照指定的步长抽取元素,得到一个新的序列。 插值:在序列中插入新的元素,通常是在指定位置插入一个特定的值或者另一个序列。 积:对两个序列进行积操作,得到一个新的序列,常用于信号处理和图像处理中
2025-05-11 13:23:52 148KB matlab 数字信号处理
1