LM3880/LM3881简单电源排序器提供一个简单且精准的方法,来控制这3个独立电源轨的加电和断电—然而,根据目前电源系统所具有的复杂度来看,3通道排序也许还是不够用。所以,对于那些需要对更多电源轨进行排序的系统,你可以将两个LM3880/LM3881器件级联在一起,以实现6通道电源排序。在这篇博文中,我将讨论一下如何将这些器件级联在一起,实现所需应用。  针对3通道排序的单个LM3880  LM3880通常用于3个电源的加电和断电排序,并且在宽温度范围内,借助精密时序功能来提供一个非常简单的解决方案。这一点在断电过程中需要反向序列时特别重要;这种情况会出现在很多微处理器和现场可编程门阵列
2025-07-11 23:38:31 220KB
1
simulink仿真 双机并联逆变器自适应阻抗下垂控制(Droop)策略模型 逆变器双机并联,控制方式采用下垂控制策略,实际运行中因两条线路阻抗不匹配,功率均分效果差,因此在下垂控制的基础上增加了自适应阻抗反馈环节,实现了公路均分。 运行性能好 具备很好的学习性和参考价值 Simulink是一种基于MATLAB的多领域仿真和模型设计软件,广泛应用于工程领域的系统仿真中。在电力电子领域,Simulink被用来模拟电力系统的工作情况,包括电压、电流以及功率流等参数。逆变器是电力系统中非常重要的设备,它负责将直流电转换为交流电,以满足不同工业和民用需求。在某些应用场景中,为了提高系统的可靠性和负载能力,会采用多台逆变器并联运行的方式。 然而,并联运行时,每台逆变器之间的阻抗如果存在差异,会导致输出功率的分配不均。这个问题在单相或多相系统中尤为突出,因为阻抗不匹配会导致电流分配不均,进而引起系统稳定性问题。传统的下垂控制策略通过调节逆变器的输出电压和频率来实现负载共享,但这种调节方式无法完全解决阻抗不匹配导致的功率分配问题。 为了解决这一问题,研究者提出了自适应阻抗下垂控制策略。这种策略在原有的下垂控制基础上增加了一个自适应阻抗反馈环节,能够根据线路阻抗的变化自动调节逆变器输出的电压和频率。通过这种自适应控制机制,即便在阻抗存在差异的情况下,也能实现较好的功率均分,保证了并联系统的整体稳定性和可靠性。 在Simulink环境下构建双机并联系统的仿真模型时,首先需要建立逆变器的动态模型,设定相关的电气参数,如电感、电容、功率开关等。然后,需要实现自适应阻抗下垂控制算法,这通常涉及到对逆变器输出电压和频率的实时监测与调节。整个仿真模型需要考虑控制系统的响应速度、稳定性和鲁棒性等因素。 通过仿真研究,可以验证自适应阻抗下垂控制策略对于解决功率分配不均问题的有效性。实验结果表明,增加了自适应阻抗反馈环节的双机并联系统,其功率均分效果得到了明显改善,系统运行性能良好。 此外,该仿真模型还具备一定的学习和参考价值。由于Simulink模型具有可视化的优点,可以直观展示逆变器的动态响应过程和控制效果,便于教学和工程人员理解和掌握复杂的控制系统设计。同时,该仿真模型也可以作为进一步研究的起点,对于深入探讨逆变器并联系统的控制策略具有重要的意义。 从文件名称列表中可以看出,相关文档资料和仿真图形文件,如仿真下的双机并联逆变器自适应虚拟阻抗下垂控制策略的描述文件,以及多个图片文件,共同构成了该研究工作的完整记录和展示。这些文件记录了仿真模型的详细信息、研究过程以及仿真结果的图形展示,为理解自适应阻抗下垂控制策略提供了丰富的素材。
2025-07-10 11:15:44 456KB istio
1
易语言是一种专为中国人设计的编程语言,它以简明的中文语法,降低了编程的门槛,使得更多非专业程序员能够快速上手。在易语言中,“高级表格”是一种常见的控件,用于显示和操作大量数据,类似于电子表格。在处理大量数据时,排序功能尤为重要,这正是“排序模块”的核心作用。 易语言的高级表格控件提供了丰富的功能,包括但不限于数据的增删查改、单元格格式设置、行列操作等。在处理复杂数据时,排序模块使得用户可以根据需要对表格中的数据进行升序或降序排列,从而更方便地分析和理解数据。排序功能通常支持多种字段,可以实现多列排序,满足不同层次的需求。 排序模块的工作原理大致如下:用户通过编程或者用户界面设定需要排序的字段及排序方式;然后,易语言会根据这些参数对表格的数据源进行排序,更新表格视图以反映新的顺序。在实现过程中,可能涉及到数组或列表的排序算法,如冒泡排序、选择排序、插入排序、快速排序等,这些算法的选择和优化直接影响到排序的效率和性能。 在易语言中,实现高级表格排序通常涉及以下步骤: 1. **创建表格**:在程序中添加高级表格控件,并设置其基本属性,如行数、列数、标题等。 2. **填充数据**:将需要显示的数据加载到表格的内部数据结构中,可以是数组、列表或者其他数据结构。 3. **添加排序功能**:编写排序函数,处理用户的排序请求。这通常包括获取排序字段和排序方式,以及调用相应的排序算法。 4. **实现排序算法**:编写排序算法,对数据进行排序。易语言提供了基本的数组操作函数,可以利用这些函数来实现各种排序算法。 5. **更新界面**:排序完成后,更新高级表格的显示,使用户可以看到排序的结果。 6. **处理多列排序**:如果需要,还可以实现多列排序功能,即按多个字段依次排序,每个字段可以有不同的排序方式。 7. **优化性能**:对于大数据量的表格,应考虑算法的效率,可能需要使用更高效的排序算法,如归并排序或堆排序。 在提供的压缩包文件中,"测试.e"可能是易语言的工程文件,包含了实现上述功能的源代码。而"高级表格_排序.ec"则可能是易语言的类库文件,封装了与高级表格排序相关的组件或函数,供工程文件调用。 易语言的高级表格排序模块是数据处理和分析的重要工具,通过合理的编程和优化,可以帮助用户高效地管理和理解大量数据。学习和掌握这一模块的使用,对于提升易语言程序的用户体验具有重要意义。
2025-06-24 21:37:27 3KB
1
内容概要:本文详细介绍了非支配排序多目标灰狼优化算法(NSGWO)的Matlab实现,涵盖了算法的核心思想、关键技术实现以及丰富的测试函数和工程应用场景。首先,文章解释了NSGWO如何将灰狼的社会等级制度与多目标优化的非支配排序相结合,通过α、β、δ三个等级的狼来引导种群进化。接着,重点讨论了目标函数的向量化操作、种群更新策略、收敛因子的设计等关键技术点。此外,还提供了46个标准测试函数及其评价指标,如超体积(HV)等。最后,通过天线设计、电机设计等多个工程案例展示NSGWO的实际应用价值。 适合人群:具备一定数学建模和优化理论基础的研究人员、工程师,尤其是从事多目标优化研究和技术开发的专业人士。 使用场景及目标:适用于需要同时优化多个相互冲突的目标的场景,如天线设计、机械设计等领域。主要目标是帮助用户理解和掌握NSGWO算法的实现原理,并能够将其应用于实际工程项目中。 其他说明:文中不仅提供了详细的代码实现,还分享了许多实用的小技巧,如矩阵运算优化、并行计算加速等。对于希望进一步改进算法的读者,文章还探讨了NSGWO与其他模型(如LSTM)结合的可能性。
2025-06-24 20:36:30 258KB
1
云计算任务调度优化是当前云计算领域的一个热门研究方向,其核心问题在于如何有效地将计算任务分配给云平台上的各种计算资源,以满足服务质量(QoS)要求并优化资源利用率。本文介绍了一种基于稳定婚姻算法的多对多匹配策略,旨在通过改进的Gale-Shapley算法实现云计算环境下任务与资源的智能匹配,以期达到降低能耗和缩短执行时间的目的。该策略基于CloudSim框架实现,CloudSim是一个开源的云计算仿真环境,专门用于模拟数据中心的运行情况,能够为云计算研究提供实验平台。 稳定婚姻算法,即Gale-Shapley算法,是一种经典的匹配算法,最初用于求解稳定婚姻问题,后来被广泛应用于经济学、计算机科学等多个领域。在云计算任务调度中,Gale-Shapley算法可以用来确定任务与资源的匹配关系,使得每项任务都能找到最适合的资源,同时每项资源也能高效地服务于一个或多个任务。通过算法的迭代过程,可以保证最终获得一个稳定的匹配结果,即不存在两个任务都更愿意与对方的资源进行匹配而放弃当前的配对。 在云计算环境下,任务调度优化不仅涉及到资源的有效利用,还包括能耗的降低和执行时间的缩短。通过采用Gale-Shapley算法,可以构建一种智能匹配机制,以提高资源的利用率,减少任务在等待资源分配过程中的空闲时间,从而降低整体的能耗和缩短任务的执行时间。这种智能匹配机制能够根据任务需求和资源特性动态地调整任务与资源之间的匹配关系,实现资源的合理分配和任务的有效调度。 基于CloudSim框架的本科毕业设计,提供了一个模拟和分析云计算任务调度优化的环境。通过CloudSim,设计者可以模拟数据中心的运行情况,包括任务的提交、资源的分配、任务的执行以及能耗的统计等。在这样的仿真平台上,可以对不同的调度策略进行比较分析,验证Gale-Shapley算法在多对多匹配场景下的性能表现,以及它在实际云计算环境中的可行性与有效性。 文档中包含的"附赠资源.docx"和"说明文件.txt",可能提供了具体的设计思路、实验结果和实现细节。例如,说明文件中可能包含了如何在CloudSim平台上部署Gale-Shapley算法,以及如何对算法进行测试和评估的详细步骤。附赠资源文档可能包含了相关的教学视频、示例代码或是对算法优化的具体建议等资源,以辅助理解和应用算法。 此外,GaleShapley-master文件夹可能包含了算法的核心实现代码,包括任务调度模块、资源匹配模块、性能评估模块等,以及可能的用户界面或控制台应用程序。这些代码为研究者和开发者提供了直接的算法实现参考,可以在此基础上进行进一步的开发和定制化研究。 总结而言,这份本科毕业设计研究了云计算任务调度优化问题,采用Gale-Shapley算法进行智能匹配,并在CloudSim平台上进行了模拟实验。研究结果可能表明,使用该算法可以有效地降低能耗、缩短执行时间,并提升资源利用率。设计者提供了相关的文档和代码资源,旨在帮助其他研究者更深入地理解算法的实现细节,以及如何在自己的研究中应用这些知识。
2025-06-24 17:14:45 551KB
1
1.实现了X64版本VS2022与高版本halcon23.05 联合编程 2.实现了vs调用海康威视类直接读取相机 3.实现了海康类转换成halcon图像 4.实现了hsmartwind缩放,平移,显示,画图功能 5.已经实现了模板匹配算法 与之前直接用halcon读取相机比较,速度更快,更稳定 //实现图像平移缩放 this.MouseWheel += new System.Windows.Forms.MouseEventHandler(this.my_MouseWheel); //读取相机 m_pDeviceList = new MyCamera.MV_CC_DEVICE_INFO_LIST(); //定义海康威视类,设置相机,读取图像 m_pMyCamera = new MyCamera(); 程序运行后,打开相机就可以操作 halcon 连续读取 ---是开启连续读取图像,并进行模板匹配 halcon读取 ---是开启软件触发功能,触发一次,读取一次 Thread hReceiveImageThreadHandle = new Thread(ReceiveIma
2025-06-23 09:02:43 22.98MB 编程语言
1
在C# WinForm开发中,用户界面的交互性是至关重要的。`ListBox`控件是常用的展示列表数据的组件,但默认情况下它不支持直接通过拖拽来改变条目的顺序。本示例将介绍如何为`ListBox`添加拖拽排序功能,使用户能够更直观、便捷地对列表进行排序。 我们需要在`Form1.cs`文件中定义`ListBox`控件,并为其设置一些基本属性,如`SelectionMode`和`AllowDrop`。`SelectionMode`应设置为`SelectionMode.MultiExtended`,这样用户可以选中多个项目;`AllowDrop`应设置为`true`,以便允许拖放操作。 ```csharp public partial class Form1 : Form { public Form1() { InitializeComponent(); listBox1.SelectionMode = SelectionMode.MultiExtended; listBox1.AllowDrop = true; } } ``` 接下来,我们需要处理几个关键的事件:`DragEnter`, `DragLeave`, `DragOver`, 和 `Drop`。这些事件会在用户拖动鼠标时触发,帮助我们实现拖拽排序的功能。 在`DragEnter`事件中,我们将检查数据是否可以被拖放到`ListBox`中。如果是,我们将设置`DragEffect`为`DragDropEffects.Move`,表示可以移动项目。 ```csharp private void listBox1_DragEnter(object sender, DragEventArgs e) { if (e.Data.GetDataPresent(typeof(string))) { e.Effect = DragDropEffects.Move; } else { e.Effect = DragDropEffects.None; } } ``` `DragOver`事件用于更新鼠标下方项的位置。我们需要计算出鼠标的相对位置,并调整`ListBox`的选中项。 ```csharp private void listBox1_DragOver(object sender, DragEventArgs e) { Point mousePosition = Control.MousePosition; Point controlPoint = listBox1.PointToClient(mousePosition); int index = listBox1.IndexFromPoint(controlPoint); // 防止越界 if (index < 0) index = 0; else if (index > listBox1.Items.Count - 1) index = listBox1.Items.Count - 1; // 如果当前选中的项和新位置不同,更新选中项 if (listBox1.SelectedIndex != index) { listBox1.SelectedIndex = index; } } ``` 在`Drop`事件中,我们实际上执行了项目的移动操作。我们获取到被拖放的数据,然后交换当前选中项和新位置的项。 ```csharp private void listBox1_Drop(object sender, DragEventArgs e) { if (e.Data.GetDataPresent(typeof(string))) { string[] data = (string[])e.Data.GetData(typeof(string)); int currentIndex = listBox1.SelectedIndex; listBox1.Items[currentIndex] = listBox1.Items[index]; listBox1.Items[index] = data[0]; listBox1.SelectedIndex = index; } } ``` 同时,为了启动拖放操作,我们还需要在`ListBox`的`MouseDown`事件中设置`DoDragDrop`,以便在用户点击并拖动时开始拖放。 ```csharp private void listBox1_MouseDown(object sender, MouseEventArgs e) { if (e.Button == MouseButtons.Left && listBox1.SelectedItem != null) { string[] selectedItems = new string[listBox1.SelectedItems.Count]; listBox1.SelectedItems.CopyTo(selectedItems, 0); listBox1.DoDragDrop(selectedItems, DragDropEffects.Move); } } ``` 以上代码实现了一个基本的`ListBox`拖拽排序功能。在`Form1.Designer.cs`中,你需要确保`listBox1`已经被正确初始化,并且在`InitializeComponent`方法中调用了上面的事件处理器。 `Program.cs`文件通常包含了应用程序的主入口点,`WindowsFormsApplication1.csproj`是项目文件,而`Form1.resx`和`Properties`文件夹则包含了窗体资源和其他配置信息,这些文件在实现拖拽排序功能中并不直接涉及。 通过处理`ListBox`控件的相关事件,我们可以为用户提供一种直观的交互方式,让他们通过拖拽来轻松调整列表的顺序。这种增强的用户体验使得C# WinForm应用更加符合现代软件设计的要求。
2025-06-19 17:38:14 10KB winform ListBox
1
匹配电路仿真与设计,LCRLC Tπ,电路匹配 仿真 设计
2025-06-19 17:26:51 4.99MB 匹配电路仿真
1
在控制系统研究领域,线性系统的分析与设计一直是核心课题之一。线性系统的状态观测器是该领域中的一个基本概念,它能够估计或重构系统的内部状态,这对于系统监控、故障诊断、状态反馈控制等多方面都有重要的意义。特别是当系统受到未知输入干扰时,设计能够观测到这些未知输入的观测器就显得尤为重要。本文所讨论的“未知输入观测器”(Unknown Input Observer, UIO)就是为了这个目的而设计的。 未知输入观测器设计理论最初在1960年代被提出,它的主要思想是利用系统的已知输出来估计系统的未知输入。这一理论在控制领域具有重要的研究价值,尤其是在面对动态系统参数不确定性、外部扰动、执行器故障等问题时,它能够帮助我们抑制或重构这些未知输入对系统造成的影响。因此,它被广泛应用于故障检测与隔离、基于观测器的控制策略等众多领域。 然而,传统的未知输入观测器设计往往需要满足所谓的“观测器匹配条件”(Observer Matching Condition, OMC)。这一条件要求未知输入与系统的动态特性有一定的匹配关系。在实际应用中,许多线性系统的未知输入并不满足这一匹配条件。为了解决这一问题,本研究提出了一种新的辅助输出构造方法。这种方法不依赖于未知输入的相对阶,因此突破了传统观测器设计中的限制。 在提出辅助输出构造方法之后,作者将原始系统转化为一个增维的线性描述系统,这个新系统不包含未知输入项。针对这种系统转化,文章详细讨论了一系列等价的前提条件。这些条件是为了确保系统转化后能够通过观测器设计来估计原系统状态与未知输入。 具体来说,本文采用的Luenberger观测器设计方法,目的是为了同时估计原系统的状态和未知输入。Luenberger观测器是一种经典的观测器设计方法,它通过引入一个辅助动态来对系统状态进行估计。在此基础上,本文还结合使用了高阶滑模微分器来估计辅助输出中的未知信号。滑模微分器是一种能够在有限时间内收敛到系统内部状态的微分器,其高阶特性使得它在处理系统噪声和未建模动态方面具有更好的鲁棒性。 为了验证所提出设计方法的有效性,文章采用了一个单连杆柔性机械手模型进行数值仿真。仿真结果证明了这一方法在未知输入不满足匹配条件时,依然能够有效地估计系统状态和未知输入。 本文的关键技术点包括: 1. 不满足观测器匹配条件时的未知输入观测器设计方法。 2. 提出与未知输入相对阶无关的辅助输出构造方法。 3. 将原系统转化为不含未知输入的增维线性描述系统。 4. 使用Luenberger观测器进行状态和未知输入的估计。 5. 利用高阶滑模微分器估计辅助输出中的未知信号。 6. 通过数值仿真验证设计方法的有效性。 通过这些知识点,我们可以了解到在面对不满足传统观测器匹配条件的线性系统时,如何设计和应用未知输入观测器来应对实际问题。这种设计方法不仅扩展了传统观测器的应用范围,也提高了系统的鲁棒性和观测器设计的灵活性。
2025-06-19 14:36:53 1.14MB 研究论文
1
数据结构课程设计的核心目的之一是加深学生对于排序算法的理解和应用,通过实际操作强化理论知识,培养学生的实践能力和团队协作精神。在设计数据结构排序算法演示系统时,需要掌握的主要知识点包括: 一、数据结构排序算法演示系统的设计目标 排序算法在计算机科学中的重要性和广泛应用决定了其成为学习的重点。排序算法不仅用于数据组织,也广泛应用于数据库管理、搜索算法以及各种优化问题中。因此,学习排序算法对个人未来的学习和工作有着深远的影响。 二、数据结构排序算法演示系统的设计内容和要求 - 界面友好,易于操作:使用菜单或其他人机对话方式进行选择,以便用户可以轻松地进行各种排序操作。 - 实现各种内部排序:包含直接插入排序、冒泡排序、直接选择排序、希尔排序、快速排序、堆排序和归并排序。 - 关键字类型和测试方法:可以对整数或字符进行排序,使用随机数据和用户输入数据进行测试,对比关键字的比较次数和移动次数。 三、数据结构排序算法演示系统所采用的数据结构 在演示系统中,数据结构通常使用结构体来表示,如这里定义的RecType结构体,其中包含一个关键字key,用于存储数据元素的关键字信息。 四、功能模块详细设计 详细设计包括各个排序算法的实现逻辑,如冒泡排序、快速排序、直接插入排序、希尔排序、直接选择排序、堆排序和归并排序。每个排序算法都有其特点和适用场景,例如: - 冒泡排序是一种简单的排序算法,通过重复遍历要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。 - 快速排序使用分治策略,通过选择一个基准值将数列分为两部分,一部分都比基准值小,另一部分都比基准值大,然后递归地排序子序列。 - 希尔排序是对直接插入排序的一种优化,先将整个待排记录序列分割成若干个子序列分别进行直接插入排序,待整个序列中的记录"基本有序"时,再对全体记录进行一次直接插入排序。 - 堆排序利用堆这种数据结构所设计的一种排序算法,它利用了大顶堆或小顶堆的性质来完成排序。 - 归并排序是一种分治法的典型应用,将已有序的子序列合并,得到完全有序的序列。 五、总结或心得体会 通过本课程设计,学生应能够体会到理论与实践相结合的重要性,并对排序算法的内部工作原理有一个深刻的认识。同时,对个人的编程能力、系统设计能力以及团队协作能力都会有显著的提高。 六、参考文献 参考文献部分应列出在课程设计过程中所参考的书籍、文章或其他资源,以便于学生进一步研究和学习排序算法。 七、附录 附录可能包括设计中使用的额外数据、图表、代码清单等辅助材料,以增强演示系统的可读性和完整性。 总结而言,设计数据结构排序算法演示系统是为了让学生能够更深入地理解各种排序算法的工作原理和性能特点,从而更好地掌握数据结构这一计算机科学基础课程的知识点。在课程设计中,不仅要注重算法的正确实现,还应关注系统设计的完整性、用户界面的友好性以及最终的用户体验。
2025-06-17 13:30:33 348KB
1