拉曼光纤放大器(RFA)具有宽的放大谱宽,中心波长随意和低的噪声指数,因此在大容量DWDM光传输系统和网络中起着重要作用[1,2]。RFA基于光纤中的受激拉曼散射(SRS),具有明显的阈值特点。采用模拟退火,实现在RFA中前向和反向多泵浦组合的一种新的可实用的优化设置方案。作为举例,用10个固态激光泵浦的64通道DWDM系统的RFA设置。在感兴趣的放大谱宽内增益不平度小于2.6dB。对于实际的信号通道数和增益曲线,该宾法可自动地产生设置。 拉曼光纤放大器(RFA)是现代大容量DWDM(密集波分复用)光传输系统中的关键组件,因为它提供了宽的放大谱宽、灵活的中心波长选择以及低噪声性能。RFA的工作原理基于光纤内的受激拉曼散射(SRS),这是一个有阈值效应的过程。随着固态激光泵浦技术的进步,尽管单个泵浦功率可以达到数百毫瓦,但在实际应用中,仍需多个泵浦激光器通过偏振复用来提供足够的光功率,以实现DWDM信号的高增益放大并保持增益平坦。 在RFA中,多泵浦配置的优化是至关重要的,因为它涉及到多个因素,如泵浦功率分配、波长选择以及泵浦和信号之间的相互作用。由于SRS过程的复杂性,传统的解析方法难以准确描述多泵浦系统的优化。为了解决这个问题,模拟退火(SA)算法被引入。SA是一种全局优化方法,尤其适用于解决具有多个局部最优解的问题,它通过模拟物质冷却过程来逐步逼近全局最优解。 在前向和反向多泵浦RFA的理论模型中,一组耦合方程描述了泵浦和信号光之间的相互作用。这些方程考虑了前向泵浦(泵浦在起点)和反向泵浦(泵浦在光纤末端)的情况,并涵盖了各种类型的串扰,包括泵浦排空和泵浦互作用等现象。优化过程涉及到在保证信号增益和系统性能的同时,合理配置泵浦的功率和波长。 在具体实施过程中,通过SA算法,每个泵浦的波长和功率会在一定的概率分布下进行随机调整,类似于物质冷却过程中的原子位移。如果新的配置能导致能量(这里可以理解为增益性能)的降低,那么这个配置就可能被接受,即使这个变化是微小的。通过逐步降低“温度”(方差),算法会收敛到一个满意的解决方案,即最优的泵浦配置。 以一个64通道DWDM系统的示例为例,使用5个连续工作的泵浦,每个泵浦功率为250mW,通过优化配置,可以实现增益不平度小于2.6dB的性能。这个过程不仅考虑了信号增益,还考虑了光纤长度、拉曼增益系数、光纤损耗等因素。 多泵浦功率多波长优化配置对于提高拉曼光纤放大器的性能至关重要,尤其是在大容量光通信网络中。利用模拟退火算法进行优化,能够自动产生适应不同实际需求的泵浦设置,从而实现最佳的信号放大效果和系统的稳定性。
2025-09-09 15:51:42 31KB 职场管理
1
基于Cruise增程混动仿真模型的功率跟随控制策略研究:动力性与经济性仿真体验,cruise软件模型,cruise增程混动仿真模型,功率跟随控制策略,Cruise混动仿真模型,串联混动汽车动力性经济性仿真。 关于模型 1.本模型是基于增程混动架构搭载的cruise仿真模型,控制策略为功率跟随控制,跟随对象为整车需求功率。 模型是基于cruise simulink搭建的base模型,策略模型基于MATLAB Simulink平台搭建完成,通过C++编译器编译成dll文件给CRUISE引用,实现联合仿真。 2.尽可能详细的描写了策略说明,大约11页左右,主要解释策略搭建逻辑及各模式间的转。 3.模型主要供学习使用,不同的车型控制策略必然不同,请不要抱着拿来即用的态度购拿,具体车型仿真任务请根据需求自行变更模型。 4.使用模型前请确保有相应软件基础,是模型,不是软件教程。 5.模型亲自搭建,提供所有相关文件。 包含:cruise模型、simulink策略模型、策略说明文档。 6.DLL文件使用64位编译器编译,如出现无策略文件提示,请在模型界面选择“options→layout→platfo
2025-09-06 19:44:57 1.38MB
1
描述 此参考设计基于 LMG1210 半桥 GaN 驱动器和 GaN 功率的高电子迁移率晶体管 (HEMT),实现了一款数兆赫兹功率级设计。凭借高效的开关和灵活的死区时间调节,此参考设计不仅可以显著改善功率密度,同时还能实现良好的效率和较宽的控制带宽。此功率级设计可广泛应用于众多需要快速响应的空间受限型应用,例如 5G 电信电源、服务器和工业电源。 特性 基于 GaN 的紧凑型功率级设计,具有高达 50MHz 的开关频率 适用于高侧和低侧的彼此独立的 PWM 输入,或具有可调节死区时间的单一 PWM 输入 最小脉冲宽度为 3ns 300V/ns 的高压摆率抗扰性 驱动器 UVLO 和过热保护
2025-09-06 12:10:11 2.78MB 电路方案
1
内容概要:本文档详细介绍了基于MTK7628方案的射频定频测试流程。首先阐述了测试前的准备工作,包括设备连接方式(POE供电、电脑网卡连接)和设备进入定频测试模式的方法(SSH或串口登录并执行“ated”指令)。接着重点描述了使用QA工具进行射频发射功率测试的具体步骤,针对B模式、G模式、N模式20M和N模式40M四种模式分别说明了QA工具和IQxel的设置方法及操作流程,确保每一步骤清晰明了,便于学习和认证测试使用。; 适合人群:从事无线网络设备研发、测试的技术人员,尤其是对MTK7628芯片有一定了解的基础用户。; 使用场景及目标:①帮助技术人员掌握MTK7628射频定频测试的操作流程;②为产品的射频性能评估提供标准化测试方法,确保符合相关标准。; 阅读建议:文档内容较为专业,建议读者在实际操作过程中对照文档逐步进行,同时注意文档中提到的注意事项和备注信息,以便顺利完成测试任务。对于不熟悉的命令或工具,可提前查阅相关资料。
2025-09-05 17:37:42 8.15MB MTK7628 射频测试 IQxel SSH
1
【基于恒功率PQ控制的三电平并网逆变器仿真】 在现代电力系统中,可再生能源的并网发电技术扮演着越来越重要的角色。其中,逆变器是连接分布式能源(如太阳能电池板或风力发电机)与电网的关键设备。本项目关注的是基于恒功率PQ控制的三电平T型并网逆变器的仿真研究,这是一种高效、稳定的电力转换技术。 一、三电平逆变器 三电平逆变器,相比传统的两电平逆变器,能提供更多的电压等级,从而显著降低输出电压的谐波含量,提高电能质量。T型结构的三电平逆变器,又称为中间电容器结构,其特点是通过三个开关元件形成中性点,使得输出电压可以处于正负两个电源电平之间的一个中间电平,从而实现更平滑的电压输出。 二、PQ控制 PQ控制,即有功功率(P)和无功功率(Q)控制,是一种广泛应用于并网逆变器的先进控制策略。它旨在调整逆变器输出的有功和无功功率,以实现电网的功率平衡和电压稳定性。在PQ控制下,逆变器可以独立调节这两个功率分量,满足电网调度的需求,同时保证电网频率和电压的稳定。 三、恒功率控制 恒功率控制是PQ控制的一种特殊形式,其目标是在电网条件变化时保持逆变器输出的有功功率恒定。这种控制方式适用于分布式能源系统,可以确保在光照强度或风速变化时,系统仍能向电网提供稳定的有功功率,保障电网的可靠运行。 四、仿真研究 本项目提供的仿真模型基于MATLAB/Simulink环境,该模型已经验证为完美运行。用户可以通过仿真了解和分析恒功率PQ控制在三电平T型并网逆变器中的具体运作过程,观察不同工况下系统的动态响应,如电压、电流波形、功率因素等关键参数的变化,以及谐波抑制效果。 五、参考文献 项目的参考文献提供了深入学习和研究的依据,用户可以通过查阅这些文献,进一步理解理论背景和技术细节,提升对三电平并网逆变器及其控制策略的理解。 "基于恒功率PQ控制的三电平并网逆变器仿真"项目不仅提供了实际的仿真模型,还涵盖了关键的电力电子技术、控制策略和并网发电的实践应用,对于研究者和工程师来说,是深入研究三电平逆变器控制技术的理想起点。通过学习和实践,我们可以更好地掌握新能源并网发电技术,推动清洁能源的广泛应用。
2025-09-02 20:58:23 48KB PQ控制 三电平逆变器 恒功率控制
1
德力西变频器CDI9200 CPU板 主板 控制板改功率
2025-09-02 19:21:02 381KB CDI9200 CPU板
1
功率放大器是无线通信系统中的核心部件,它负责将信号放大到足够的电平以驱动天线进行有效的信号传输。随着无线通信技术的快速发展,现代无线发射机不仅要支持多通信标准,还需适应不同的工作模式,这对功率放大器的设计提出了更高的要求。功放的宽带和高效率特性成为未来无线通信技术发展的关键。 F类功率放大器作为一种高效率放大器,在功率放大器的设计领域具有重要地位。传统F类功率放大器通过优化负载阻抗,以减少在功率放大器上的损耗,从而提升效率。然而,由于它对基波和谐波阻抗的要求非常严格,这限制了其在宽带应用方面的能力。为了解决这一问题,Steve C. Cripps团队在2009年提出了连续型F类的概念,通过放宽对基波和谐波阻抗的严格要求,成功地扩展了F类功放的带宽。随后,Z. Lu等人通过引入电阻性谐波阻抗,进一步扩展了连续型F类功放的设计空间。Q. Li等人将此方法应用于逆F类功放,并成功实现了一款宽带高效率功率放大器。 本文在连续型F类功率放大器的基础上,引入了电阻性的二次谐波和三次谐波阻抗,消除了对三次谐波阻抗的严格要求,进一步拓展了放大器的设计空间。通过结合负载牵引技术,成功实现了一款频率范围在0.5-2.0GHz内的宽带高效率功率放大器。这款放大器在0.5-2.0GHz频段内的饱和输出功率在39.8-41.4dBm之间,饱和漏极效率在59%-79%之间。 连续F类功率放大器设计的关键在于如何平衡效率与带宽之间的关系。本文提出的新模型通过引入修正因子来调整电压和电流波形,以达到在较宽的频率范围内保持高效率的目的。在实现宽带高效率放大器的过程中,仿真和测试是不可或缺的环节。测试结果表明,新设计的功率放大器在预期的频带内,输出功率、增益以及漏极效率等关键性能指标均达到设计要求,并与仿真结果较为吻合。尽管在中间频带的漏极效率出现了一定程度的恶化,但这一现象在先前的研究中已经被预测到了。 未来的研究可能集中在如何进一步优化放大器的性能,尤其是在中频带的效率问题上。同时,可能还会探索不同的材料和制造工艺,以实现更高的功率密度和更低的功耗,从而提升整体无线通信系统的能效。此外,为了适应不断演进的无线通信标准,设计将需要兼容更多不同的频段,包括毫米波频段,这也是功率放大器未来设计的一个挑战。 本文提出的新型修正型连续F类工作模式,在宽带和高效率功率放大器的设计方面取得了显著的进展,为未来无线通信系统的发展提供了一种高效的功率放大器设计方案。
2025-08-28 17:33:40 261KB 研究论文
1
基于行星排的新能源汽车整车功率分流Simulink仿真模型:优化构型及控制系统研究,新能源汽车行星排Simulink仿真模型:功率分流控制下的全车构型与丰田普锐斯THS模型之比较研究,新能源汽车行星排整车simulink仿真模型(功率分流控制) 整车构型和丰田普锐斯Prius、THS整车模型类似—— ——行星排建模(发动机模型、启动电机模型、驱动电机模型、电池模型BMS、功率转器、行星排模型、整车控制单元模型) ,新能源汽车; 功率分流控制; 行星排仿真模型; 发动机模型; 驱动电机模型; 电池模型BMS; 功率转换器; 整车控制单元模型,新能源汽车功率分流控制行星排整车Simulink仿真模型研究
2025-08-28 15:07:55 2.32MB
1
射频功率放大器在无线通信领域扮演着至关重要的角色,然而其效率问题一直是业界关注的焦点。射频功率放大器的效率提升对于电池驱动设备的续航能力、基站的能源消耗和无线系统的整体性能都有显著影响。本文将探讨几种提高RF功率放大器效率的技术和策略。 Doherty架构是一种在近年来得到广泛应用的高效放大器设计。1936年由Doherty博士提出的这种架构,通过结合AB类和C类放大器的工作方式,能够在高平均功率比(PAR)信号下提供较高的功率附加效率。典型的Doherty放大器由一个AB类载波放大器和一个C类峰值放大器组成,两者通过90°相位差的信号分配协同工作。当输入信号功率较高时,两个放大器共同作用,而在低功率电平时,仅AB类载波放大器工作,以维持效率。尽管Doherty架构有很好的效率提升,但其线性度和输出功率可能会略逊于传统的双AB类放大器。 为了进一步提升线性度,模拟和数字线性化技术,特别是数字预失真(DPD)和波峰因子降低(CFR)被广泛采用。DPD通过对输入信号进行反失真处理,使放大器能够在更接近饱和的工作点保持线性,从而减少RF晶体管的数量,降低电流消耗,提高效率。CFR则是通过调整信号的峰均比来减少失真,这两者结合使用可以实现更大的性能提升。 此外,Chireix的异相功率放大器技术,也被称为“outphasing”,利用两个非线性RF功率放大器,通过不同相位的信号驱动,以实现更高效率。这种方法允许更灵活的功率控制和更有效的能量转换。 除了上述技术,还有其他创新方法在不断研究中,如使用新型半导体材料、优化功率管理算法以及开发新的放大器拓扑结构。例如,GaN(氮化镓)和SiC(碳化硅)等高性能半导体材料因其高击穿电压和高速度,能够提高功率密度和效率。同时,智能功率调度和自适应偏置技术也有助于动态调整放大器的工作状态,以适应不同的信号条件。 提升射频功率放大器效率是一项综合性的任务,涉及硬件设计、信号处理算法以及材料科学等多个领域的创新。随着技术的发展,我们有望看到更加高效、节能的RF功率放大器,为无线通信带来更优质的服务,同时也为环境保护和能源利用做出贡献。
2025-08-27 21:00:07 136KB 功率放大器 电子竞赛
1
Doherty功率放大器是一种高效的射频功率放大技术,适用于现代无线通信系统,以提高功率放大器的效率。该技术由贝尔实验室的William H. Doherty在1936年首次提出,并最初应用于真空管放大器。Doherty放大器的核心思想是通过两个放大器的协同工作——载波放大器和峰值放大器——来实现高效率的放大。 在理想情况下,Doherty放大器能够在较大的输入功率范围内保持较高的效率。当输入信号较小时,只有载波放大器工作,而当输入信号增强至一定程度后,峰值放大器开始工作。峰值放大器的引入会降低载波放大器所感受到的负载阻抗,从而使得输出功率得到增加。在理论情况下,当载波放大器输出达到峰值饱和时,整体放大器的效率可达到最大值π/4。如果激励增大,峰值放大器工作时,整体放大器效率能够提前达到最大值,并且效率曲线更加平坦。 Doherty放大器设计的基本步骤包括:选择合适的功率放大器元器件,设计静态工作点和偏置电路,以及进行源和负载匹配网络的设计。在设计过程中,通常会用到ADS(Advanced Design System)这样的仿真软件来进行电路设计和仿真,以优化放大器的整体性能。 在实际应用中,由于存在非理想因素,设计者通常会在载波放大器和峰值放大器后面加上补偿线,以改善在小信号时的增益和效率。通过仿真分析,补偿线的引入可以使放大器的效率提高10%,并且增益曲线变得更加平坦。 在选择功率放大器时,通常有多种器件类型可供选择,如Si双极功率晶体管、GaAs功率晶体管、LDMOS功率晶体管和GaN功率晶体管等。这些器件各有优劣,选择合适的器件需考虑如功率输出、工作频率、增益和效率等性能参数。本文中,设计者选择了LDMOSFET器件,因其在S波段具有高增益和高功率的特点。 Doherty放大器设计中的关键参数包括直流工作点的选取、阻抗匹配以及补偿线长度的选择。阻抗匹配是确保放大器与信号源以及负载之间能量传输最优化的重要环节。而补偿线的长度则关系到放大器工作时的负载阻抗调整,以及与峰值放大器的协同工作效果。 Doherty放大器相较于传统放大器,即便在功率回退的情况下也能保持较高的效率,这使得Doherty放大器在现代通信系统中具有广泛的应用前景,特别是在对功耗和能效要求日益严格的无线通信领域。通过不断优化设计,Doherty放大器技术有望在未来提供更加高效的功率放大解决方案。
2025-08-27 20:56:16 707KB
1