Scikit学习教程 一组用于scikit学习自学习的示例。 工作正在进行中... 本教程正在创建中。 还没结束 如何衡量模型性能 标准指标精度,召回率,F1指标- 该示例显示了如何计算基本分类器度量值,例如精度,召回率,f1 文件: 精确召回曲线 示例说明了如何在理想的随机情况下解释精确调用曲线。 如果两个模型的曲线看起来相似该怎么办。 文件: 开发环境 python> 3.6 吹牛 sklearn> 0.21.3
2022-01-31 03:47:07 35.64MB tutorial text-classification scikit-learn roc-curve
1
libsvm分类和回归GUI版本,及其使用介绍文档
2022-01-28 15:09:18 30.29MB SVM SVR SVC
1
支持向量机是机器学习领域的研究热点之一,其理论基础是统计学习理论.该文严谨且通俗地描述了这一理论的概貌,并提出有附加信息的统计学习理论的设想.
2021-12-26 16:29:13 6.64MB 支持向量机SVM 线性分类回归
1
Python极限学习机(ELM) Python极限学习机(ELM)是一种用于分类/回归任务的机器学习技术。 免费软件:BSD许可证 文档: : 。 特征 ELM内核 ELM随机神经元 ML工具
2021-11-26 16:33:09 89KB Python
1
随机森林的matlab代码,既包括随机森林分类代码,也包括随机森林回归代码
2021-11-17 18:42:38 443KB matlab 随机森林 分类 回归
1
C++实现机器学习决策树算法CART(Classification And Regression Trees, 即分类回归树).同样实现了剪枝算法用于解决决策树会产生过拟合的情况.代码干净,整洁,有注释可直接使用.
2021-11-07 10:26:48 11KB 机器学习 决策树
1
基于MATLAB的BP神经网络分类回归程序
2021-10-16 17:25:27 2KB MATLAB的BP分类回归程序
1
本篇文章主要介绍了PyTorch上搭建简单神经网络实现回归和分类的示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
2021-10-09 09:48:02 203KB PyTorch 神经网络 分类 回归
1
机器学习与数据科学 机器学习和数据挖掘:回归[线性(选择和收缩,降维,超出线性范围)和非线性回归(逻辑,K-NN,树)],交叉验证(LOOCV,K折,偏差与方差) ,分类(LDA,QDA,K-NN,物流,树,SVM),聚类(PCA,K-Means,分层)本课程将介绍数据挖掘/统计学习的主要主题,包括:统计基础,数据可视化,分类,回归,聚类。 重点将放在统计学习方法,其背后的模型,直觉和假设以及对实际问题的应用上。 您可以在stats 415项目文件夹中找到我的最终项目。 项目总结 实施整个学期学习的所有分类器,以预测通过BMI分类的美国肥胖率,其中最佳分类器为7倍KNN,预测准确性为81.54% 分析模型选择方法以提供最佳模型并找到最佳预测因子; 结论是可以根据收入,饮食习惯,运动习惯和购物习惯来非参数地预测BMI
2021-08-30 13:48:18 18.05MB R
1
SVM工具箱,可用于分类、回归,带GUI接口,很方便!里面有例子的数据!
1