中国是传统的农业大国, 农业不仅是国民经济建设与发展的基础, 也是社会正常稳定有序运行的保障. 然而每年由于农作物病虫害造成的损失巨大, 且传统的农作物病虫害识别方法效果并不理想. 同时近年深度学习飞速发展, 在图像分类与识别的方面取得了巨大进展. 因此本文通过基于深度学习的方法构建农作物病虫害图像识别模型, 并针对样本不平衡问题改进卷积网络损失函数. 实验证明该模型可以对农作物病虫害进行有效识别并且对损失函数进行优化后模型的准确率也进一步得到了提升.
1
行业分类-设备装置-一种基于Android手机平台的识别农作物病虫害的方法及系统.zip
2021-09-11 09:05:17 606KB 行业分类-设备装置-一种基于An
农作物病虫害专家系统界面截图photodb.zip
1
传统的农作物病虫害识别方法具有鲁棒性差、识别准确率低等问题,而卷积神经网络具有自动提取图像特征、泛化能力强、识别准确率高等特点。快速准确地识别出农作物病虫害类型不仅可以减少病害给农民带来的损失,还可以降低农药对生态环境带来的影响。因此找到一种简单易行的检测方法来快速检测农作物病虫害类型很有意义。基于此,笔者在实验中采用了一种基于残差网络改进的卷积神经网络,并以公开的植物数据集影像作为实验的数据集来训练神经网络,且引入了Xception、VGG-16网络模型进行比较,实验结果证明:笔者所提出的神经网络模型识别准确率达到了98.6%,高于xception的93%、VGG-16的95%。
2021-02-22 21:11:44 371KB 深度学习 病虫害 农作物病虫害
1