近年来,机器学习方法在农业领域的应用取得巨大成功,广泛应用于科 学施肥、产量预测和经济效益预估等领域。根据土壤信息进行数据挖掘,并在此基础上提出区域性作物的种植建议,不仅可以促进农作物生长从而带来经济效益,还可以改善土壤肥力,促进可持续发展。本文根据土土 壤养分元素[如:氮(N)、磷(P)、钾(K)等]的含量建立模型分析并且给出精准预测,可以实现了几种机器学习分类算法形成科学的种植方案,最终还实现了应用界面的实现。
这项研究调查了气候变化因素和非气候变化因素对尼日利亚农作物产量的影响。 采用了经验研究方法,使用了从信誉良好的来源获得的1980-2013年时间序列年度数据的辅助来源。 错误校正机制用于分析。 研究发现,在短期内,只有降雨对气候变化因素中的农作物产量具有显着的正向影响,但从长期来看,有证据表明所有气候变化因子均对作物产量具有显着影响。 例如,对作物产量进行了温度,二氧化碳排放,碳排放和降雨的显着测试。 此外,非气候变化因素,例如从事经济活动的人口,总资本形成以及可供灌溉的土地面积,对作物产量也具有显着的正向作用。 为了阻止气候变化对作物产量的影响,研究建议政策制定者应制定政策,以帮助农民采取适应农业的做法,从而减轻气候变化的影响。 此外,政府和其他有关机构还应设计方案,以激励群众增加对作物生产的参与。
2023-02-20 21:58:21 344KB 气候变化 作物产量 农业 协整
1
农作物播种、施肥自动化作业智能监控系统的设计.pdf
农作物生长情况识别挑战赛_数据集 农作物生长情况识别挑战赛_数据集 农作物生长情况识别挑战赛_数据集
2023-01-04 17:29:03 47.37MB 农作物 生长 识别 挑战赛
基于机器学习实现的农作物病虫害识别系统源码+数据(python).zip利用阿里云识农api和机器学习实现的农作物病虫害识别系统。目前,人工智能技术在农业领域的普及应用,还存在着数据共享不足、算法门槛过高、算力垄断、实验与应用环境差距过大等问题。所以,本文基于阿里云计算技术与人工智能机器学习的计算机视觉技术,开发了一套跨平 台、易使用的农作物病虫害自动识别系统,大幅降低了人工智能技术的使用门槛,使农业 从业人员也可享受智能技术红利,促进智慧农业发展。 基于机器学习实现的农作物病虫害识别系统源码+数据(python).zip利用阿里云识农api和机器学习实现的农作物病虫害识别系统。目前,人工智能技术在农业领域的普及应用,还存在着数据共享不足、算法门槛过高、算力垄断、实验与应用环境差距过大等问题。所以,本文基于阿里云计算技术与人工智能机器学习的计算机视觉技术,开发了一套跨平 台、易使用的农作物病虫害自动识别系统,大幅降低了人工智能技术的使用门槛,使农业 从业人员也可享受智能技术红利,促进智慧农业发展。 基于机器学习实现的农作物病虫害识别系统源码+数据(python).zip利用阿里云识
基于深度学习的农作物病虫害识别APP源码+项目说明.zip 【APP功能】 “拍照识别病虫害”:用户可以对发病的作物叶片或者果实进行拍照,裁剪对应发病区域,等待2~3秒即可以返回匹配率最高的三个疾病,并将识别率标记到对应的疾病卡片上,显示在照片的上方。用户可以通过拍照识别结构卡片,会显示对应疾病的具体信息、危害病症、传播途径、发病条件和治理方法。帮助用户快速找到解决方法,对症下药。 大数据 农技学习”:该界面罗列了100多种蔬菜、粮棉油、水果、经济作物等几类常见的农作物,并使用TabLayout + Fragment滑动布局加载这些农作物。可以使大量数据流畅的展示给用户。用户通过点击对应疾病的卡片,获取当前病虫害的典型照片以及具体信息,包括:对应症状、病原、传播途径和发病条件、防治方法等等。为解决大多数农民用户不会拼音、难以识字的问题,该界面也配备了多方言的语音朗读,解决南北语言差异问题的同时也构成了良好的交互界面,方便用户使用。
基于Pytorch+resnet50的农作物病虫害识别分类项目源码+病害数据集+项目说明文档.zip 【数据增强】 data_aug.py 用于线下数据增强,支持的增强方式: 高斯噪声 亮度变化 左右翻转 上下翻转 色彩抖动 对比度变化 锐度变化 【使用方法】 第一步:将测试集图片复制到 data/test/ 下 第二步:将训练集合验证集中的图片都复制到 data/temp/images/ 下,将两个 json 文件放到 data/temp/labels/ 下 执行 move.py 文件 执行 main.py 进行训练
基于机器学习实现的农作物病虫害识别系统源码+全部数据.zip已获导师指导并通过的高分项目 本项目是一个非常完整的深度学习实践项目,内附从安装到部署详细教程。 目前,人工智能技术在农业领域的普及应用,还存在着数据共享不足、 算法门槛过高、算力垄断、实验与应用环境差距过大等问题。所以,本文基于 阿里云计算技术与机器学习计算机视觉技术,开发了一套农作物病虫害识别系统,大幅降低了人工智能技术使用门槛,使农业从业人员也可享受智能技术红利,促进智慧农业发展。 基于机器学习实现的农作物病虫害识别系统源码+全部数据.zip已获导师指导并通过的高分项目 本项目是一个非常完整的深度学习实践项目,内附从安装到部署详细教程。 目前,人工智能技术在农业领域的普及应用,还存在着数据共享不足、 算法门槛过高、算力垄断、实验与应用环境差距过大等问题。所以,本文基于 阿里云计算技术与机器学习计算机视觉技术,开发了一套农作物病虫害识别系统,大幅降低了人工智能技术使用门槛,使农业从业人员也可享受智能技术红利,促进智慧农业发展。
包含了甜菜、苜蓿、葡萄、柑橘 、芒果共等8种作物
2022-11-09 16:26:21 756.46MB 深度学习 图像分类 数据集 农作物病虫害
1
neo4j图数据库+python+知识图谱(适用于毕业/课程设计)
2022-11-08 17:11:24 4.9MB 知识图谱 kbqa 问答系统
1