基于MATLAB实现SARIMA时间序列预测源码+全部数据.zip一种基于SARIMA的时间序列预测方法,得到所述预测时间点对应的预测结果。 基于MATLAB实现SARIMA时间序列预测源码+全部数据.zip一种基于SARIMA的时间序列预测方法,得到所述预测时间点对应的预测结果。 基于MATLAB实现SARIMA时间序列预测源码+全部数据.zip一种基于SARIMA的时间序列预测方法,得到所述预测时间点对应的预测结果。 基于MATLAB实现SARIMA时间序列预测源码+全部数据.zip一种基于SARIMA的时间序列预测方法,得到所述预测时间点对应的预测结果。 基于MATLAB实现SARIMA时间序列预测源码+全部数据.zip一种基于SARIMA的时间序列预测方法,得到所述预测时间点对应的预测结果。 基于MATLAB实现SARIMA时间序列预测源码+全部数据.zip一种基于SARIMA的时间序列预测方法,得到所述预测时间点对应的预测结果。 基于MATLAB实现SARIMA时间序列预测源码+全部数据.zip一种基于SARIMA的时间序列预测方法,得到所述预测时间点对应的预测结果。
基于MATLAB实现LSTM时间序列预测源码+全部数据.zip基于MATLAB实现LSTM时间序列预测源码+全部数据.zip基于MATLAB实现LSTM时间序列预测源码.zip基于MATLAB实现LSTM时间序列预测源码.zip基于MATLAB实现LSTM时间序列预测源码.zip基于MATLAB实现LSTM时间序列预测源码.zip基于MATLAB实现LSTM时间序列预测源码.zip基于MATLAB实现LSTM时间序列预测源码.zip基于MATLAB实现LSTM时间序列预测源码.zip基于MATLAB实现LSTM时间序列预测源码.zip基于MATLAB实现LSTM时间序列预测源码.zip基于MATLAB实现LSTM时间序列预测源码.zip基于MATLAB实现LSTM时间序列预测源码.zip基于MATLAB实现LSTM时间序列预测源码.zip基于MATLAB实现LSTM时间序列预测源码.zip基于MATLAB实现LSTM时间序列预测源码.zip基于MATLAB实现LSTM时间序列预测源码.zip基于MATLAB实现LSTM时间序列预测源码.zip
python基于LSTM神经网络进行时间序列数据预测源码+全部数据.zip包含数据清洗,数据特征提取,数据建模,数据预测使用LSTM神经网络进行时间序列数据预测分析。基于Tensorflow框架、Kerase接口开发网络模型。 .LSTM单变量2 1.观测值缩放 2.时间序列转换成稳定数据 3.时间序列转监督学习数据 1_3.LSTM单变量3 1.LSTM模型开发 1_4.LSTM单变量4 1.完整的LSTM案例 1_5.LSTM单变量5 1.更健壮的LSTM案例 2.LSTM多变量(air_pollution) 1_1.LSTM多变量1 1.数据输出 2.预处理 1_2.LSTM多变量2 1.LSTM数据预处理 1_3.LSTM多变量3 1.定义&训练模型 2.数据预处理 3.Multi-Step LSTM预测(shampoo-sales) 1_1.Multi-Step LSTM预测1 1.静态模型预测 1_2.Multi-Step LSTM预测2 1.多步预测的LSTM网络 二
python基于ARIMA时间序列的销量预测模型全部数据.zipARIMA模型提供了基于时间序列理论,对数据进行平稳化处理(AR和MA过程)、模型定阶(自动差分过程)、参数估计,建立模型,并对模型进行检验。 在Python中statsmodel提供了全套的解决方案,包括窗口选择、自动定阶和平稳性检测等等算法。 预测策略 每月分上中下旬三个点预测,每月预测三次当月销量。这么做的好处是,月上旬和中旬的实际销量可以作为先验知识,提高模型预测的准确率。 依赖包 pip install -r requirements.txt 程序执行 python sales.py python基于ARIMA时间序列的销量预测模型全部数据.zipARIMA模型提供了基于时间序列理论,对数据进行平稳化处理(AR和MA过程)、模型定阶(自动差分过程)、参数估计,建立模型,并对模型进行检验。 在Python中statsmodel提供了全套的解决方案,包括窗口选择、自动定阶和平稳性检测等等算法。 预测策略 每月分上中下旬三个点预测,每月预测三次当月销量。这么做的好处是,月上旬和中旬的实际销量可以作为先验知识
微信小程序课程设计像素画微信小程序源码+数据库+课程报告全部数据.zip 系统分为五个模块: 1. 像素画画板模块:绘制像素画,预览像素画的绘制过程,修改像素画 2. 像素画上传模块:校验像素画的内容,上传像素画到服务器 3. 像素画分享模块:查看其他用户上传的像素画,编辑其他用户上传的像素画,查看其他用户绘制像素画的过程(播放像素画) 4. 像素画管理模块:查看自己的所有像素画,删除自己的某个像素画 5. 个人信息模块:登录注册和退出登录 2 小程序设计 2.1 通用样式模块 通用样式包括通用按钮样式,通用横向布局通用样式,纵向布局通用样式。 通用按钮样式共有8中样式,分别是红紫绿橙大按钮和红紫绿橙小按钮。横向与纵向的通用布局采用的是flex方式。微信小程序课程设计像素画微信小程序源码+数据库+课程报告全部数据.zip微信小程序课程设计像素画微信小程序源码+数据库+课程报告全部数据.zip微信小程序课程设计像素画微信小程序源码+数据库+课程报告全部数据.zip微信小程序课程设计像素画微信小程序源码+数据库+课程报告全部数据.zip微信小程序课程设计像素画微信小程序源码+数据库+课程
基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。 我们将整个程序分成7个python文件,其中三个文件是细胞分割的算法,一个结果评估的文件,一个细胞再筛选的文件,一个图像处理的文件和一个main文件 三个划分算法分别为:cell_segmentation_by_sub.py、cell_segmentation_by_shape.py、cell_segmentation_by_fit.py. 结果评估文件是:divide_assessment.py. 细胞再筛选文件是:results_filter.py. 图像处理文件是:image_processing.py. 主程序文件:main.py. 基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。
基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自
基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料
基于深度学习的网课专注度监测预警系统源码+全部数据.zip通过对用户注意力情况监测,对用户注意力情况进行分析。根据注意力分析结果,可以对用户进行语音提示,并且将注意力分析结果通过led屏幕展示给用户。可以根据用户自身使用需求对各功能进行用户个性化设置。主要通过眼部特征、嘴部特征、头部特征三个主要的特征值来进行注意力集中情况分析。当用户眼部特征呈现出眨眼状态,根据视频中每帧图片检测眼睛长/宽的值是否大于阈值,超过一定次数范围则判断用户处于注意力不集中状态;当用户嘴部特征呈现打哈欠状态,根据张口度与张口时间,若超过阈值一定范围和次数则判断用户处于注意力不集中状态;将用户头部转换为3D模型,当用户呈现出瞌睡点头状态,根据各头部关键点位置变化计算其角度变换大小,若超过一定角度范围则判断用户处于注意力不集中状态。
基于机器学习实现的农作物病虫害识别系统源码+全部数据.zip已获导师指导并通过的高分项目 本项目是一个非常完整的深度学习实践项目,内附从安装到部署详细教程。 目前,人工智能技术在农业领域的普及应用,还存在着数据共享不足、 算法门槛过高、算力垄断、实验与应用环境差距过大等问题。所以,本文基于 阿里云计算技术与机器学习计算机视觉技术,开发了一套农作物病虫害识别系统,大幅降低了人工智能技术使用门槛,使农业从业人员也可享受智能技术红利,促进智慧农业发展。 基于机器学习实现的农作物病虫害识别系统源码+全部数据.zip已获导师指导并通过的高分项目 本项目是一个非常完整的深度学习实践项目,内附从安装到部署详细教程。 目前,人工智能技术在农业领域的普及应用,还存在着数据共享不足、 算法门槛过高、算力垄断、实验与应用环境差距过大等问题。所以,本文基于 阿里云计算技术与机器学习计算机视觉技术,开发了一套农作物病虫害识别系统,大幅降低了人工智能技术使用门槛,使农业从业人员也可享受智能技术红利,促进智慧农业发展。