基于全卷积Fully-Convolutional-Siamese-Networks的目标跟踪仿真+word版说明文档 版本组合:Win7+Matlab R2015b+CUDA7.5+vs2013 文档中提供了上述运行环境的配置方法 注意事项(仿真图预览可参考博主博客里面"同名文章内容"。)
2022-05-26 12:05:57 99.8MB 目标跟踪 人工智能 计算机视觉 全卷积
使用FCN进行图像分割 使用Keras框架和Python3,我实现了一个包括其编码器和解码器的全卷积网络“ FCN”,以对室内场景图像(如卧室,客厅和饭厅)进行分割,以最终令人满意的精度,损失和平均交集超过了MIoU ”。 结果
2022-05-11 08:18:03 3.34MB JupyterNotebook
1
针对目标追踪过程中由于目标快速运动及尺度变化导致追踪失败的问题, 提出了一种基于全卷积对称网络的目标尺度自适应追踪算法。首先利用MatConvNet框架构建全卷积对称网络, 使用训练好的网络得到实验图像与模板的多维特征图, 两者通过互相关操作, 选取置信分数最大的点为所追踪目标的中心位置; 其次, 对中心位置进行多尺度采样, 将小于模板方差1/2的错误样本过滤掉; 建立目标模板和样本概率直方图, 计算模板与样本间的海林洛距离, 选取合适的尺度作为目标追踪窗口的尺度。在OTB-13数据集上进行实验, 与其他追踪算法性能比较, 本文算法追踪成功率为0.832, 精度为0.899, 高于同类型深度学习追踪算法, 平均追踪速度达到42.3 frame/s, 满足实时性的需求; 挑选包含目标快速运动或尺度变化属性的追踪序列进一步进行测试, 本文算法追踪性能仍高于其他算法。
2022-05-07 16:40:24 17.44MB 机器视觉 稳健跟踪 全卷积对 深度学习
1
多了一个全连接层,也就是在VGG的第五层加上三层全连接,其中前五层的Weight和Bias直接用VGG的参数当做初始值(迁移学习),后面三层参数高斯初始化设置. 然后使用三层"反卷积"接在第八层之后,这里的参数都是使用高斯初始化的.最后得到和输入图一样大小的图(end to end) 如何训练?这里比较麻烦,我看见网上很多人在问这个问题,我刚开始也一直纠结.
2022-05-05 13:47:12 12KB fcn
1
全卷积神经网络FCN用于图像分割的工具箱(FCN for image segmentation)
2022-05-01 16:06:41 21KB cnn 人工智能 神经网络 深度学习
针对低照度条件下图像对比度不高、颜色失衡和存在噪声等问题,提出了一种基于多分支全卷积神经网络(MBACNN)的低照度图像增强模型。该模型是一个端到端的模型,包含特征提取模块(FEM)、增强模块(EM)、融合模块(FM)和噪声提取模块(NEM)。通过对合成的低照度和高清图像样本进行训练,根据验证集的损失值不断调整模型参数,以得到最优模型;然后对合成低照度图像和真实低照度图像进行测试。实验结果表明,与传统的图像增强算法相比,所提出的模型能够有效提高图像对比度、调整颜色失衡并去除噪声,主观视觉和客观图像质量评价指标都得到进一步改善。
2022-04-06 19:58:02 13.79MB 图像处理 卷积神经 特征融合 低照度图
1
都是我自己在知网上下载的语义分割论文,特别适合语义分割的入门学习,可以了解语义分割的训练与检测流程。
2022-04-05 09:34:40 17.15MB 语义分割 深度学区 全卷积网络
1
基于从一张含有任意人群密度和任意视角的图像中准确地估计出其中的人群数目的目的,采用了全卷积神经网络先从图像中获得其人群密度图,然后对人群密度图上每个位置进行求和操作得到最终的人群数目的方法。所采用的全卷积神经网络不受输入图像的分辨率和视角的影响,同时,通过增加池化层层数,扩大网络的感受野,适应了图像中人头比较大的情况。所提出的算法在UCF_CC_50标准数据集上取得了最好的效果,进而验证了算法的高准确率和有效性。
1
基于U-Net模型, 提出了一个全卷积网络(FCN)模型, 用于高分辨率遥感图像语义分割, 其中数据预处理采用了数据标准化和数据增强, 模型训练过程采用Adam优化器, 模型性能评估采用平均Jaccard指数。为提高小类预测的准确率, 模型中采用了加权交叉熵损失函数和自适应阈值方法。在DSTL数据集上进行了实验, 结果表明所提方法将预测结果的平均Jaccard指数从0.611提升到0.636, 可实现对高分辨率遥感图像端到端的精确分类。
2022-03-07 23:29:39 19.52MB 图像处理 遥感图像 语义分割 类别非均
1
预算matlab代码 全卷积网络的半监督深度学习MICCAI 2017论文的正式实施 克里斯托夫·鲍尔( Christoph Baur ,慕尼黑TU),沙迪·阿尔巴古尼( Shadi Albarqouni) (慕尼黑TU),纳西尔·纳瓦布( Nassir Navab )慕尼黑(TU)和巴尔的摩JHU C. Baur和S. Albarqouni对这项工作做出了同等贡献 抽象的: 深度学习通常需要大量带标签的训练数据,但是注释数据既昂贵又乏味。 半监督学习的框架提供了使用标记数据和任意数量的未标记数据进行训练的方法。 最近,针对标准CNN架构对半监督式深度学习进行了深入研究。 但是,全卷积网络(FCN)为许多图像分割任务设定了最新技术。 据我们所知,目前尚无针对此类FCN的半监督学习方法。 在随机特征嵌入的帮助下,我们提出了用于半监督学习的辅助流形嵌入到FCN的概念。 在有关MS病变分割的艰巨任务的实验中,我们利用提议的框架进行域适应,并报告了相对于基线模型的实质性改进。 C. Baur和S. Albarqouni对这项工作做出了同样的贡献。 资源 要求 MATLAB 2017a(最后测试
2022-02-12 11:26:51 13.77MB 系统开源
1