### 硅基电子器件仿真专题:无源器件的研究与分析 #### 背景 随着信息技术的快速发展,通信系统对于更高带宽、更低能耗的需求日益增长。硅基电子技术作为下一代高速通信的核心技术之一,其发展受到了广泛的关注。硅作为一种成熟的半导体材料,在集成电路制造领域拥有丰富的经验和资源,因此硅基电子器件不仅能够利用现有的半导体制造工艺,还能够实现与其他电子元件的高度集成,从而显著降低系统成本并提高性能。 在硅基电子器件的设计和优化过程中,仿真是不可或缺的一环。它不仅可以帮助研究人员理解和预测器件的行为,还可以指导设计过程中的参数选择和结构优化,从而缩短开发周期并降低成本。Macondo和Nuwa是两款由GMPT Technology Company Ltd.自主研发的TCAD仿真软件,它们为硅基电子器件的设计提供了强大的支持。 #### Macondo 波动学与电磁波仿真软件 ##### 简介 Macondo是一款专为波动学和电磁波仿真设计的软件。它采用了先进的数值方法和技术来模拟各种学现象,特别是在硅基电子器件的仿真中具有显著优势。 ##### 模型与算法 - **材料折射率和空间折射率扰动模型**:这些模型用于精确描述材料的学性质,包括其折射率随频率的变化以及在不同空间位置上的变化。 - **材料折射率色散拟合模型**:通过该模型可以准确地模拟材料的色散效应,这对于理解器件在不同波长下的行为至关重要。 - **时域有限差分(FDTD)3D求解器**:FDTD是一种常用的数值方法,用于解决Maxwell方程组,可以模拟电磁波在复杂几何结构中的传播情况。 - **本征模式展开(EME)3D求解器**:适用于模拟波导结构中的波传播,特别适合处理长距离传输问题。 - **模式求解(FDE)2D求解器**:主要用于求解特定结构中的模式分布和特性,如有效折射率等。 - **总场散射场(TFSF)算法**:通过将入射场和散射场分开计算,可以有效地模拟复杂结构中的电磁场分布。 - **共形网格与非均匀网格算法**:这些算法提高了模拟的精度和效率,尤其是在处理具有不规则形状或复杂结构的器件时更为重要。 - **模式源注入模型**:用于模拟不同类型的源注入到器件中的情况,比如激二极管的注入等。 - **边界条件模型**:包括完美匹配层(PML)、周期性边界条件等,这些模型确保了模拟结果的准确性。 ##### 输出 - **基础电磁特性** - **模式场分布**:显示模式在不同位置上的场分布情况。 - **有效折射率**:反映了波导结构中波的传播特性。 - **损耗**:衡量波在传输过程中的能量损失。 - **偏振比**:表示波偏振态的特性。 - **介质折射率分布**:展示了介质内部折射率的空间分布。 - **电磁场强度与坡印廷矢量**:用于分析能量流的方向和大小。 - **透射率**:衡量波穿过器件的能力。 - **电磁场的传输特性**:描述了电磁场在器件内部的传播特性。 - **模式传输的特征参数** - **波导损耗**:包括弯曲损耗、耦合损耗等,这些损耗对器件的整体性能有重要影响。 - **偏振分束与偏振旋转**:涉及偏振态的变化,对于某些应用(如偏振复用)非常重要。 - **消比与带宽**:分别反映了器件的选择性和工作范围。 - **多模传输与色散**:多模传输会影响信号质量,而色散则限制了器件的工作速度。 - **串扰与波导尺寸**:串扰是指相邻通道之间的信号干扰,波导尺寸的选择直接影响了器件的性能。 - **单模条件**:满足一定条件下的单模传输是许多高性能器件的要求。 - **多模干涉耦合**:这种现象可以通过调整耦合长度来优化,从而提高器件性能。 - **插入损耗与附加损耗**:这些参数决定了器件的效率。 - **分比与隔离度**:反映了器件在分离不同波长信号方面的能力。 - **定向耦合**:通过控制耦合长度来调整耦合强度。 - **微环谐振**:涉及到共振频率、自由谱范围等特性,对于滤波器和传感器等应用至关重要。 - **栅波导传输**:包括谱响应、反射峰值、衍射谱等参数,对于栅器件的性能评估非常关键。 - **亚波长栅传输**:亚波长栅能够实现高效的场控制,对于许多高级应用非常有用。 - **倏逝场增强**:利用倏逝场效应可以提高器件的灵敏度和效率。 - **子晶体波导传输**:子晶体波导能够实现对波的精确控制,对于构建新型子器件非常有前景。 Macondo和Nuwa TCAD仿真软件为硅基电子器件的设计提供了全面的支持,通过上述模型和算法的应用,可以有效地预测和优化器件的性能,为实际产品的开发提供重要的理论依据和技术支持。
2024-09-29 11:47:20 8.39MB 无源光器件
1
伏采用PLL控制并入电网,仿真模型包含详细的控制结构,锁相环控制并网逆变器的d轴和q轴电流,实现了并网有功无功功率的精确控制,仿真结果稳定,可以通过FFT看到直流电压环引起的低频振荡
2024-09-25 14:54:07 58KB simulink matlab 光伏并网 低频振荡
1
这篇论文主要讨论的是2009年电子设计竞赛A题——伏并网发电模拟装置的设计。该装置采用了当今流行的SPWM(脉宽调制)技术,由两片低端AVR单片机构建的主从控系统来实现。该系统不仅能够高效地进行DC/AC转换,还能够通过MPPT(最大功率点跟踪)算法精确追踪最大功率点,以优化能量输出。同时,装置具备频率和相位跟踪功能,并设有过流、欠压、过热三种保护措施,确保系统的稳定运行。 在方案选择上,首先考虑了使用频率调节芯片SA8382或SA8281直接产生SPWM波,但因其高昂的价格和较低的性价比而被否决。接着,研究了利用NE555产生的三角波与单片机通过D/A转换产生的正弦波,通过比较器TLV3501生成SPWM波,尽管这种方法成本较低,但控制难度大,实现起来较为复杂。最终,论文选择了使用AVR单片机megal6的定时器和比较匹配机制来产生SPWM波,这种方法能产生高频且高精度的SPWM波,且数字控制更加灵活,干扰小。为了兼顾控制和SPWM生成,采用两片megal6构成主从控制结构。 在MPPT(最大功率点跟踪)控制方法上,一种方案是通过软件调控SPWM波的调制比,改变负载电压和电流,以达到转换器的分压目标。另一种方案是在DC/AC转换前级使用TL494为核心的DC-DC升压模块,实现硬件自动反馈调节,达到稳压目的,这种方法减少了单片机的压力,提高了系统的稳定性。 对于同频同相的测量控制,方案一是利用A/D连续采样参考波形和反馈波形,计算频率并通过单片机调节SPWM来同步波形。这个方法对A/D转换器性能要求较高,需要处理大量数据。另一种方案是将参考信号通过比较器整流为方波,通过单片机控制调整SPWM的相位,简化了实现过程。 该论文涉及的主要知识点包括: 1. SPWM调制技术:通过改变脉冲宽度来调节输出电压的平均值,实现交流电的模拟。 2. AVR单片机的应用:在伏并网发电模拟装置中的主从控制设计,以及SPWM波的生成。 3. MPPT算法:用于追踪太阳能电池的最大功率点,提高能量转换效率。 4. 系统保护机制:过流、欠压、过热保护,保证设备安全稳定运行。 5. 频率和相位跟踪:确保并网发电模拟装置与电网的同步。 6. 方案比较与选择:考虑性价比、控制难度、系统稳定性等因素。 这篇论文为电子设计竞赛提供了有价值的参考和指导,展示了如何利用低成本组件设计出高性能的伏并网发电模拟装置。
2024-09-24 13:10:13 382KB 电子设计竞赛 2009
1
华为HN8145XR 固件R21 版本号:HN8145XR_V500R021C00SPC260B130 华为K662D 固件R21 版本号:K662d_V500R021C00SPC156 华为HN8145XR 固件R22 版本号:HN8145XR_V500R022C10SPC160B014
2024-09-21 21:28:36 2.37MB
1
### 海DCU-DTK 23.04.1 hipprof使用手册知识点解析 #### 一、hipprof简介 hipprof是一款由海DCU-DTK开发的专业性能分析工具,主要应用于HIP应用程序的性能分析。该工具通过提供丰富的可视化功能帮助开发者深入理解其程序在运行时的行为与性能表现,进而指导程序优化。hipprof的核心功能包括但不限于单进程、多进程乃至多节点的HIP API跟踪、ROCTX跟踪、MPI日志解析、PMC硬件计数器性能数据的统计输出等。 #### 二、hipprof指令详解 ##### 2.1 hipprof参数 hipprof支持多种参数配置,用户可以根据实际需求选择不同的参数来定制化性能分析过程。例如: - `-t` 或 `--trace`: 用于指定跟踪类型,如HIP API跟踪、ROCTX跟踪等。 - `-o` 或 `--output`: 设置输出文件名或路径。 - `-p` 或 `--pmc`: 配置PMC(Performance Counter)的使用,用于收集硬件计数器的数据。 - `-v` 或 `--verbose`: 提供详细输出模式,便于调试和故障排查。 - `-h` 或 `--help`: 显示帮助信息,列出所有可用的命令行选项及其用途。 ##### 2.2 tracing指令 tracing指令用于启动追踪功能,可以追踪单进程或多进程中的HIP API调用情况。通过tracing指令,用户可以获得关于HIP API调用的详细信息,如调用时间戳、执行时长等。这对于识别性能瓶颈、优化代码逻辑非常有用。 - **单进程HIP接口跟踪**:通过设置合适的tracing参数,可以实现对单个进程内的HIP API调用进行精细化跟踪。 - **多进程HIP接口跟踪**:针对多进程场景下的HIP API调用,hipprof同样提供了强大的跟踪能力,有助于分析进程间交互带来的性能影响。 ##### 2.3 pmc指令 PMC(Performance Monitor Counters)性能监控计数器是一种硬件级别的性能监测工具,能够捕捉到软件层面难以检测的细节。通过pmc指令,用户可以配置特定的PMC计数器,从而获取更深层次的性能数据。 - **PMC性能分析**:利用PMC计数器收集的数据,hipprof能够生成详尽的性能报告,包括但不限于CPU利用率、缓存命中率等关键指标。 #### 三、hipprof功能演示 ##### 3.1 单进程HIP接口跟踪可视化 对于单进程的HIP API跟踪,hipprof提供了直观的可视化界面,方便用户快速定位问题所在。通过对API调用的时间序列分析,可以帮助开发者发现耗时较长的操作,并进一步优化。 ##### 3.2 多进程HIP接口跟踪可视化 当涉及多进程通信时,hipprof能够同时追踪各个进程中的HIP API调用情况,并将结果以可视化的方式展现出来。这有助于理解进程间的依赖关系及潜在的并发问题。 ##### 3.3 显存使用曲线跟踪可视化 随着版本更新,DTK-22.10.1增加了对显存使用情况的跟踪和可视化输出功能。这对于分析GPU内存管理尤为重要,能够帮助开发者识别内存泄漏或者无效分配等问题。 ##### 3.4 MPI多节点多进程HIP接口跟踪可视化 在分布式计算环境中,hipprof支持对跨节点的多进程进行HIP API跟踪。通过这一功能,可以深入了解不同节点之间数据交换的过程,为优化并行算法提供依据。 ##### 3.5 hiptx接口跟踪可视化 hipprof还支持对hiptx接口进行跟踪,并以图表形式展示出来。这对于理解同步操作及其对性能的影响非常有帮助。 ##### 3.6 PMC性能分析 PMC性能分析是通过配置PMC计数器来收集性能数据的过程。hipprof支持PMC计数器的数据统计输出,并且在DTK-23.04版本中增加了Performance Counter输出格式选项,使得用户可以根据自身需求选择最合适的输出格式,从而更好地分析性能瓶颈。 ### 版本更新要点 - **DTK-23.04**: 修改Performance Counter(PMC)输出方式,增加Performance Counter输出格式选项,使用户能够更加灵活地处理和分析PMC数据。 - **DTK-22.10.1**: 新增显存使用情况的跟踪和可视化输出功能,有助于开发者更好地管理GPU资源。 - **DTK-22.10**: 为了应对跟踪数据过多导致的可视化展示问题,hipprof在该版本中引入了数据自动分割机制,将大量跟踪数据分割成多个文件进行分组可视化展示。 hipprof是一款功能强大且易于使用的性能分析工具,不仅适用于HIP应用程序的性能优化,还能为研究人员提供深入理解GPU编程行为的宝贵资料。通过对上述知识点的学习与实践,用户可以充分利用hipprof的各项功能,提高开发效率,提升软件质量。
2024-09-04 11:23:25 1.26MB 使用手册
1
网络上有许多“礼后羿4.1.118” 的资源下载,但是都没注册机,,在此附上注册机给大家共享!~
2024-08-31 23:22:46 1.66MB 点歌系统 礼光后羿
1
标题中的“three_SPWM控制_三相并网_伏_三相并网逆变_逆变器_”指的是一个关于三相并网逆变器的SPWM(Sinusoidal Pulse Width Modulation,正弦脉宽调制)控制技术在伏应用中的实施方案。这一技术对于理解和设计高效、可靠的伏电力系统至关重要。 SPWM控制是一种广泛应用的调制方法,它通过改变脉冲宽度来模拟正弦波形,从而实现对交流输出电压的有效控制。在三相并网逆变器中,SPWM技术能够提供高质量的交流输出,降低谐波失真,并提高能效。这种控制策略使得逆变器可以与电网平滑连接,保证电力传输的稳定性和效率。 三相并网逆变器是将直流电转换为与电网同步的交流电的关键设备,尤其在太阳能发电系统中,逆变器的作用是将伏电池板产生的直流电转化为电网可接受的交流电。伏逆变器不仅需要处理功率转换,还需要具备并网功能,即能够自动调整自身的频率和电压以匹配电网参数,同时确保电网安全和稳定。 伏系统中的SPWM控制策略通常包括以下几个关键环节: 1. **直流侧电压控制**:通过调节直流侧电压,确保逆变器在不同照条件下都能稳定工作。 2. **电流控制**:通过SPWM算法生成控制信号,使逆变器输出的三相交流电流接近正弦波形,减少谐波含量。 3. **锁相环(PLL)技术**:用于检测电网电压相位,确保逆变器输出的电流与电网电压同相位,实现并网。 4. **保护机制**:包含过电压、过电流、短路等保护功能,保障系统安全运行。 5. **最大功率点跟踪(MPPT)**:优化伏电池的功率输出,即使在照强度变化时也能获取最大能量。 压缩包中的“three.mdl”可能是一个Matlab/Simulink模型文件,用于模拟和分析三相并网逆变器的SPWM控制策略。用户可以通过这个模型来仿真逆变器的动态性能,调整控制参数,以及验证系统在不同条件下的行为。 三相并网逆变器的SPWM控制技术是伏电力系统的核心组成部分,它涉及到电力电子、控制理论、信号处理等多个领域的知识。掌握这一技术有助于设计出高性能、高效率的伏并网系统,满足绿色能源发展的需求。
2024-08-31 21:54:45 10KB SPWM控制 三相并网 三相并网逆变
1
自由曲面匀透镜被广泛应用于发二极管(LED)照明中。传统的基于几何近似的自由曲面求解方法,由于存在建模误差,导致求解的面型不够精确,照明面均匀性下降。提出了一种误差分析及补偿方法,通过建立面型误差和出射角度误差之间的联系,结合线追迹,实现了面型误差的准确量化和修正。采用该方法,针对1000 mm 工作距离,直径200 mm 照明范围的景观照明透镜进行了补偿设计,并用Lighttools 软件进行了仿真。结果表明:点源模拟情况下,相对于传统几何近似求解方法,照明均匀性(最小照度/平均照度)由68.0%提升到98.5%;1 mm×1 mm尺寸LED 源模拟情况下,在直径160 mm 的照明范围内,均匀性达到91.8%,具有良好的实用性。
2024-08-21 21:01:23 2.61MB 光学设计 自由曲面 均匀照明 优化设计
1
针对线在大角度偏转时菲涅耳损耗大、强均匀性差等问题,提出了基于最优双偏转能量映射和贝塞尔曲线多参数优化的双自由曲面透镜设计算法,并利用该算法设计了基于板上芯片型(COB)发二极管(LED)的双自由曲面透镜,该透镜可应用于可见通信系统的学发射端。以大面积发面的COB LED作为源,通过控制自由曲面透镜内外两个表面上的入射线偏转角的比例关系(即偏转系数),可降低菲涅耳损耗。构建了出角分别为180°和260°的大角度均匀强分布的双自由曲面透镜,其强均匀度分别为0.92和0.90,其能利用率分别为89.4%和85.9%。将单自由曲面透镜和双自由曲面透镜的学性能作对比,结果表明,单自由曲面透镜可实现出角范围为120°~180°、强均匀度超过0.85以及能利用率超过85%的分布,双自由曲面透镜在达到同样的强均匀度和能利用率时,可实现出角范围为100°~260°之间的均匀强分布。因此,利用双自由曲面透镜能够实现更大范围出角的均匀强分布,从而满足可见通信系统的学发射端的分布要求。
2024-08-21 20:17:24 9.86MB 光学设计 可见光通
1
### LED透镜损失分析 #### 一、LED透镜的材料种类及其特性 LED透镜根据材料的不同,主要分为硅胶透镜、PMMA透镜、PC透镜以及玻璃透镜四大类。 1. **硅胶透镜** - **特点**:硅胶透镜因其优异的耐高温性能(可承受高达200℃以上的温度,适用于过回流焊过程),被广泛用于直接封装在LED芯片上。 - **应用**:通常体积较小,直径范围在3-10mm之间,适合用于对体积要求较为严格的场合。 2. **PMMA透镜** - **成分**:学级PMMA,即聚甲基丙烯酸甲酯,俗称亚克力。 - **优点**:生产效率高,可通过注塑工艺快速成型;透率高,3mm厚度时可达93%左右。 - **缺点**:耐温性较差,热变形温度约为90℃,需注意源与灯罩的距离控制,以防过热。 3. **PC透镜** - **成分**:学级PC,即聚碳酸酯。 - **优点**:生产效率高,同样可通过注塑工艺快速成型;耐温性较好,可承受130℃以上的温度。 - **缺点**:透率略低于PMMA,约为87%。 4. **玻璃透镜** - **特点**:透率极高,可达97%,并且耐高温。 - **缺点**:易碎,制造非球面透镜较难,生产效率低且成本较高。 #### 二、LED透镜的应用分类 LED透镜根据其在LED照明系统中的位置,可以分为一次透镜和二次透镜两大类。 1. **一次透镜** - **定义**:直接封装或粘合在LED芯片支架上的透镜。 - **功能**:能够有效收集LED芯片发出的线,并调整其出角度,常见的角度有160°、140°、120°、90°甚至60°等。 - **材料**:多使用PMMA或硅胶材料。 2. **二次透镜** - **定义**:独立于LED芯片的透镜,但在应用时紧密相连。 - **功能**:进一步聚焦LED发出的大角度(一般为90-120°),实现更精确的束角(例如5°至80°)。 - **材料**:通常采用PMMA或玻璃材质。 #### 三、LED透镜规格分类 根据透镜的设计原理,可以将其分为穿透式和全反射式两类。 1. **穿透式透镜** - **原理**:线经过透镜曲面折射后聚集,曲面的曲率半径由特定公式计算得出。 - **应用**:适用于大角度(40-80°)的聚需求,如台灯、路灯等。 - **特点**:透镜侧面的线利用率较低。 2. **全反射式透镜** - **原理**:除了正面聚外,侧面也通过全反射原理收集并反射线。 - **应用**:能有效提高线利用率,获得更为均匀的斑效果。 - **特点**:可根据需求设计不同的表面结构,以实现不同的照效果。 #### 四、LED透镜模组 1. **定义**:将多个单个透镜集成在一个整体中,形成多头透镜模组。 2. **优势**:节省生产成本,提高产品一致性,节省空间,更容易实现大功率照明需求。 #### 五、损失斟酌 在LED照明系统中,考虑到通量的实际分布、外壳透镜透过率以及溢出损失等因素,合理的分布设计显得尤为重要。 1. **分布设计** - 为了满足标准要求,需要通过透镜将平行束进行扩散处理。 - 设计中将灯具外罩分割成矩形小单元,通过不同曲率半径的椭球面实现不同方向上的扩散效果,从而优化分布。 2. **通量利用** - 双向曲率曲面透镜可以自由地分配输出,更高效地利用通量,减少不必要的损失和眩。 - 完全透明的PMMA灯饰或灯罩可能在源中心产生眩,而在源外围亮度急剧下降,这在某些应用场景中需要避免。 LED透镜的选择与设计对于提高LED照明系统的效和视觉舒适度至关重要。通过对透镜材料、应用类型、规格设计以及损失等方面进行综合考量,可以实现更加高效和均匀的分布。
2024-08-21 20:03:35 100KB led透镜
1