如何使用HFSS进行13.56MHz NFC线圈和RFID天线的设计与仿真。首先,通过参数化建模的方式,在HFSS中创建了线圈天线模型,重点讨论了线宽、间距、匝数、板厚等因素对天线性能的影响。接着,深入分析了天线的等效电感、电容、损耗电阻等关键参数,并探讨了不同参数对天线性能的具体影响。随后,文章讲解了并联和串联匹配电路的设计与仿真,强调了实际调试时需要考虑的因素,如寄生电容的非线性补偿。最后,分享了一些实战经验和常见问题的解决方案,如铺地层对磁场的影响。 适合人群:从事无线通信、射频识别(RFID)、NFC技术研发的工程师和技术爱好者。 使用场景及目标:适用于需要深入了解NFC线圈和RFID天线设计原理及仿真的技术人员,帮助他们掌握HFSS工具的使用技巧,提高天线设计的成功率。 其他说明:文章不仅提供了详细的理论分析,还结合了实际操作经验,使读者能够更好地理解和应用相关知识。
2025-09-25 16:16:51 926KB
1
电子病历,作为医疗信息化的重要组成部分,记录了患者的病史、检查结果、治疗过程等关键信息,对临床诊断、治疗和疾病研究都具有不可替代的价值。然而,电子病历时序数据通常带有高噪声和非平稳特性,这对于数据处理与分析带来了很大挑战。传统模型在处理此类复杂数据时往往存在局限性,无法很好地提取关键信息并进行准确预测。 为了解决这一问题,本文提出了一种名为VMD-LSTM的混合模型。该模型的核心是“分解-预测-集成”的框架。利用变分模态分解(VMD)方法,将原始病历时序数据分解成若干个相对平稳的本征模态函数(Intrinsic Mode Functions, IMFs)。这一步骤有效地减少了数据中的噪声,并使后续的预测工作变得更加可行。 接下来,针对分解后的每个IMF分量,使用长短时记忆网络(Long Short-Term Memory, LSTM)进行时序预测。LSTM是一种特殊的循环神经网络(RNN),它拥有学习长期依赖信息的能力,非常适合处理和预测时间序列数据中的重要事件。 为了进一步提高预测精度,VMD-LSTM模型引入了参数自适应优化策略,如CPO(Constrained Parameter Optimization)算法,用于优化关键参数K和α。通过这种策略,模型能够更好地捕捉数据中的动态变化,同时适应不同患者情况下的病历数据特性。 研究的核心结果显示,VMD-LSTM模型在进行时序预测时取得了显著的性能提升。与单一使用LSTM模型(均方根误差RMSE为0.86,平均绝对误差MAE为0.62)和传统的经验模态分解与LSTM结合的EMD-LSTM模型(RMSE为0.63,MAE为0.45)相比,VMD-LSTM模型的预测精度最高,RMSE和MAE分别达到0.51和0.38。这些成果表明,VMD-LSTM模型在处理电子病历时序数据时,具有更高的预测精度和鲁棒性。 对于临床工作来说,这样的高精度时序分析工具具有重要价值。尤其是在ICU(重症监护室)环境下,医生需对患者病情进行实时监控和风险评估,准确的时序预测可以显著提高监护效率,提前识别患者病情的潜在风险,从而为患者提供更加精确及时的医疗服务。此外,该模型在疾病研究和医疗大数据分析领域也展现了广阔的前景和应用潜力,有助于提高医疗数据的使用价值和分析深度。 VMD-LSTM模型的研究,不仅为我们提供了一个处理高噪声电子病历时序数据的有效工具,更为后续相关研究提供了新的思路和方法。通过该模型的临床转化应用,有望在提高医疗服务质量、降低医疗成本等方面发挥重要作用。
2025-09-21 23:38:41 46KB 电子病历
1
内容概要:本文详细介绍了基于ADRC(自抗扰控制)的电机转速控制系统及其Simulink仿真实现。首先阐述了一阶ADRC适用于快速响应的小惯性电机,其核心组件为跟踪微分器TD、扩张状态观测器ESO和状态误差反馈,并提供了TD的具体Matlab代码实现。接着讨论了二阶ADRC用于复杂工况下大惯性电机的应用,特别是ESO升级到三阶以同时估计转速、加速度和总扰动,并展示了C语言形式的S函数实现。最后引入了粒子群优化(PSO)进行参数优化,通过ITAE指标评估优化效果,显著降低了超调量。文中还给出了具体的实战建议,包括不同阶次ADRC的选择依据、噪声处理以及防止过冲的方法。 适合人群:对电机控制理论有一定了解,希望深入掌握ADRC控制技术和Simulink仿真的工程师和技术人员。 使用场景及目标:①理解和应用一阶和二阶ADRC在不同类型的电机控制系统中的优势;②利用粒子群优化提高ADRC参数配置效率;③通过Simulink平台验证和改进电机转速控制系统的性能。 阅读建议:读者需要具备一定的电机控制基础知识,尤其是对PID控制有所了解。建议边读边动手实践,在Simulink环境中尝试搭建和调整ADRC控制系统,以便更好地理解各部分的工作原理和相互关系。
2025-07-21 10:04:58 915KB
1
研究小面积实现同时兼顾加密速率的平衡优化方法,构造一个Tab盒,使S盒变换采用1×16位的空间预存储置换表Tab,通过O(1)查表效率即可实现SubBytes变换。密钥扩展采用上升沿有效的时钟控制密钥生成,因此不必等待下一时钟上升沿到来,从而减少了系统延时。将明文的S盒替换和密钥扩展的S盒替换放在同一个模块里,在模块里用同时连续赋值方式实现,从而减少寄存器的个数。把S盒、字节替换、行移位、Tab盒、列混合变换、密钥扩展基本子模块都整合到一个模块中,相比各模块单独实现减少了算法实现面积与运算时代码开销。实验表明在Xilinx Virtex-5 FPGA上实现的吞吐率达到了6.55 Gbps,面积缩减到10 277 slices。
2025-06-21 17:08:38 1.26MB
1
配送是物流系统中很重要的一个环节,它要求在规定的时间内以一定的方 式将确定的货物送到指定的地点。而车辆路径问题是研究货物运输成本最小的 物流配送问题,它也是运输组织优化中的核心问题,由于它将运筹学理论与生 产实践紧密地结合,因而在最近几十年取得了丰硕的研究成果,并且被称为“最 近几十年运筹学领域最成功的研究之一"。因此,用启发式算法求解该问题就 成为人们研究的一个重要方向。 物流配送路径优化问题是一个复杂而重要的议题,尤其是在现代商业环境中,高效的配送路线设计对于降低运营成本、提升服务质量具有显著影响。传统的线性规划或整数规划等精确算法在处理大规模问题时往往面临计算时间过长的挑战,因此,启发式算法如蚁群算法成为了解决此类问题的有效工具。 蚁群算法(Ant Colony Optimization, ACO)是受到蚂蚁寻找食物过程中信息素沉积和追踪行为启发的一种分布式优化算法。在这个算法中,每只蚂蚁代表一条可能的路径,蚂蚁在选择路径时会依据路径上的信息素浓度和距离两个因素。信息素是一种虚拟的化学物质,在这里表示路径的优劣,蚂蚁走过的路径会留下信息素,而随着时间的推移,信息素会逐渐挥发。这种机制使得算法在迭代过程中能够逐渐发现较优的解决方案。 在本文中,研究人员针对物流配送路径优化问题提出了改进的蚁群算法。他们引入了遗传算法(Genetic Algorithm, GA)的遗传算子,包括复制、交叉和变异,这些算子能够增强蚁群算法的全局搜索能力和收敛速度。复制确保优秀的解得以保留,交叉则允许不同路径之间交换信息,变异则增加了算法的探索性,避免陷入局部最优。 他们对信息素的更新策略进行了改进。原版蚁群算法的信息素更新通常采用蒸发和强化两部分,但在改进版本中,信息素的残留程度可以根据算法的收敛情况动态调整,这提高了算法的自适应性,能够在需要时加速收敛,或者在需要时增加全局探索。 此外,论文还引入了一种确定性搜索方法,旨在进一步加快启发式搜索的收敛速度。这种方法可能涉及到设置一定的搜索规则或策略,使蚂蚁更倾向于探索那些有潜力的区域,从而更快地找到高质量解。 通过对比实验,改进的蚁群算法在求解物流配送路线问题时,能够有效地求得问题的最优解或近似最优解,而且求解速度快,证明了该方法的有效性和实用性。 这篇研究展示了如何通过融合遗传算法的策略和对蚁群算法的关键元素进行优化,来提升物流配送路径问题的求解效率。这种结合不同优化算法的方法为解决复杂组合优化问题提供了新的思路,对于物流管理、交通规划等领域有着广泛的应用价值。
2025-06-19 15:05:24 418KB 蚁群算法
1
在当前能源转型和低碳经济发展的大背景下,风光储微电网作为一种新兴的能源供应体系,越来越受到重视。微电网结合风能、太阳能和储能装置,能够提高能源利用效率,减少对外部电网的依赖。然而,如何对微电网中的储能容量进行有效优化,一直是相关领域研究的热点问题。 本研究针对风光储微电网的储能容量优化问题,提出了基于改进灰狼优化算法(CGWO)的研究方法。灰狼优化算法是一种模拟灰狼捕食行为的新型智能优化算法,具有良好的全局搜索能力和较快的收敛速度。针对传统灰狼优化算法在复杂问题求解过程中可能出现的早熟收敛和局部搜索能力不足的缺陷,本研究对算法进行了改进,旨在提高其求解精度和效率。 在理论基础与方法论部分,本研究首先对微电网的概念和发展进行了阐述,接着介绍了储能系统的特点及应用,并对灰狼优化算法及其改进进行了深入分析。此外,研究构建了风光储微电网的系统模型,为后续的储能容量优化奠定了基础。 改进灰狼算法的设计与实现环节,探讨了算法的基本原理,并给出了改进思路和步骤流程。这部分内容对算法的改进过程进行了详细说明,包括如何通过调整参数和引入新的策略来提升算法性能。 在风光储微电网储能容量优化模型部分,本研究通过数学建模和优化目标的设定,对风光储微电网系统进行了建模,并详细描述了储能容量优化的目标与约束条件。通过数学表达式呈现了优化问题的求解方法,并对优化结果进行了分析对比,给出了相应图表和数据。 仿真与结果分析部分,研究使用了特定的仿真平台和参数设置,展示了仿真结果,并对结果进行了深入分析。同时,将改进灰狼算法(CGWO)与传统灰狼优化算法(GWO)以及粒子群优化算法(PSO)和遗传算法(GA)进行了对比,从收玫曲线、微电网供电与负荷匹配、储能状态变化(SOC)和总成本等方面,展示了改进算法的优势和优化效果。 在结论与展望部分,本研究总结了研究的主要结论,并指出了研究过程中存在的不足以及未来研究的发展方向。通过优化前后微电网供电与负荷匹配、储能SOC变化、总成本对比等指标,充分证明了改进灰狼算法在风光储微电网储能容量优化中的有效性和优越性。 本次研究的核心目标是通过改进灰狼算法提高风光储微电网储能容量优化的效率和精度,以期达到提升可再生能源利用率和降低系统总成本的目的。通过仿真验证,该算法在微电网系统中的应用前景广阔,并为相关领域的深入研究提供了理论和技术支持。
2025-05-15 13:57:09 20KB
1
强化学习DDPG算法在Simulink与MATLAB中的实现与应用:自适应PID与模型预测控制融合的新尝试,基于强化学习DDPG算法的自适应控制及机械臂轨迹跟踪优化研究,强化学习算法,DDPG算法,在simulink或MATLAB中编写强化学习算法,基于强化学习的自适应pid,基于强化学习的模型预测控制算法,基于RL的MPC,Reinforcement learning工具箱,具体例子的编程。 根据需求进行算法定制: 1.强化学习DDPG与控制算法MPC,鲁棒控制,PID,ADRC的结合。 2.基于强化学习DDPG的机械臂轨迹跟踪控制。 3.基于强化学习的自适应控制等。 4.基于强化学习的倒立摆控制。 ,核心关键词: 强化学习算法; DDPG算法; Simulink或MATLAB编写; MPC; 自适应PID; 模型预测控制算法; RL工具箱; 结合控制算法; 鲁棒控制; 轨迹跟踪控制; 机械臂; 倒立摆控制。,强化学习在控制系统中的应用与实现:从DDPG到MPC及PID鲁棒自适应控制
2025-05-12 15:32:12 1.78MB
1
基于遗传算法的低碳冷链物流配送路径优化研究:综合考虑固定成本、制冷成本、惩罚成本、货损成本、运输成本及碳排放成本,基于遗传算法的低碳冷链物流配送路径优化研究:综合考虑固定成本、制冷成本、惩罚成本、货损成本、运输成本及碳排放成本,低碳冷链路径规划 遗传算法 车辆路径规划问题 遗传算法考虑惩罚成本的低碳冷链物流配送 以固定成本,制冷成本,惩罚成本,损成本,运输成本,碳排放成本总和最小为优化目标 ,低碳冷链路径规划; 遗传算法; 成本优化; 货损成本; 碳排放成本,基于遗传算法的低碳冷链物流路径优化研究
2025-05-09 20:06:11 1.87MB edge
1
基于分时电价机制的家庭能量管理策略优化研究:考虑空调、电动汽车及可平移负荷的精细控制模型,基于分时电价机制的家庭能量管理策略优化研究:集成空调、电动汽车与可平移负荷管理模型,MATLAB代码:基于分时电价条件下家庭能量管理策略研究 关键词:家庭能量管理模型 分时电价 空调 电动汽车 可平移负荷 参考文档:《基于分时电价和蓄电池实时控制策略的家庭能量系统优化》参考部分模型 《计及舒适度的家庭能量管理系统优化控制策略》参考部分模型 仿真平台:MATLAB+CPLEX 平台 优势:代码具有一定的深度和创新性,注释清晰,非烂大街的代码,非常精品 主要内容:代码主要做的是家庭能量管理模型,首先构建了电动汽车、空调、热水器以及烘干机等若干家庭用户用电设备的能量管理模型,其次,考虑在分时电价、动态电价以及动态电价下休息日和工作日家庭用户的最优能量管理策略,依次通过CPLEX完成不同场景下居民用电策略的优化,该代码适合新手学习以及在此基础上进行拓展 ,核心关键词: 家庭能量管理模型; 分时电价; 电动汽车; 空调; 可平移负荷; 优化控制策略; 仿真平台(MATLAB+CPLEX); 深度创新性。,
2025-05-07 15:30:45 3.95MB scss
1
阻抗导纳控制:基于Matlab Simulink的参数仿真与优化研究,阻抗导纳控制:基于Matlab Simulink的参数仿真与优化研究,阻抗控制 导纳控制 Matlab simulink 参数仿真 参数优化 可仿真不同的MBK参数值 ,阻抗控制; 导纳控制; Matlab simulink; 参数仿真; 参数优化; MBK参数值,"阻抗导纳控制:Matlab Simulink参数仿真与优化" 阻抗导纳控制是一种重要的机械系统和机器人控制系统中的技术,它涉及到阻抗控制和导纳控制两种控制策略。在Matlab Simulink环境下进行参数仿真与优化是这一研究领域的常见实践。通过仿真与优化,可以精确地模拟控制系统的动态行为,并对系统的性能进行评估和提升。 阻抗控制主要关注系统与环境之间的力学交互,它能够保证机械系统的运动与环境之间保持某种预定的关系,如阻抗控制使得机械臂能够根据外部环境的接触力来调整其位置和速度。而导纳控制则是阻抗控制的另一种形式,它通过调整机械系统的动态特性来响应外部输入的力,使得系统能够与外部环境形成某种预期的运动关系。 Matlab Simulink作为一个强大的仿真和建模工具,允许研究人员对控制系统的参数进行模拟和调整,进而优化系统的性能。在仿真过程中,可以对不同的参数组合进行测试,以便找到最佳的控制参数。例如,MBK参数值(Mass-Beam-Kirchhoff参数)是模拟弹性体的刚度和质量的重要参数,在阻抗导纳控制中尤为重要。 本文档集合中包含了多个关于阻抗控制与导纳控制的文件,这些文件涉及了该技术在机械系统和机器人自动化系统中的应用。其中,部分文档以.doc格式出现,包含了详细的文字描述和案例分析;而有的以.html格式存在,可能是网页形式的文档,适合在线阅读;还有.txt格式的文件,这种格式通常用于保存纯文本数据,可能是代码或者未格式化的数据;此外,还有图片文件,虽然文件名仅提供了“1.jpg”和“2.jpg”这样的信息,但它们可能是相关的图形说明或结果展示。 这些文件共同构成了一个完整的关于阻抗导纳控制技术的研究资源库,涵盖了从理论分析到实际应用的各个方面。通过对这些文件的研究,可以更好地理解阻抗导纳控制在现代机械系统和机器人自动化系统中的应用和优化方法,为相关领域提供重要的技术和理论支持。
2025-04-29 15:27:25 115KB
1