针对现有方法在高密度场景人群密度估计不够准确的问题,提出了Gabor滤波结合最小二乘支持向量机(LS-SVM)的人群密度估计算法。首先,设计一组单独的二维Gabor滤波器应用在人群图像中以产生相应的滤波通道。然后,通过计算这些通道上灰度值的均值和方差得到特征向量。最后,采用最小二乘支持向量机分析特征向量和人数之间的关系,完成最终的密度估计。在UCSD数据集和Mall数据集上的实验显示,提出的方法实现了更快的执行时间和更好的精度,证明了基于Gabor滤波器和LS-SVM的人群密度估计算法的有效性。
1