详细的数据情况请查看csdn博客链接:http://t.csdnimg.cn/X5O5m 数据量 10万+, 标注支持三种格式 chemfig, ssml,ssml_sd满足你各类标注要求,因每个文件大小都大于2G,所以提供链接下载,请务必将所有文件下载完成后进行解压,下载完整后解压,下载完整后解压,下载完整后解压 本数据集收集了大量的手写化学式,旨在支持和促进化学式的自动识别技术的发展。数据集包含了多种化学元素和化合物的手写表示,适用于企业级应用,比如药品研发、教育、化工制造等行业。该数据集经过严格的质量控制和预处理,可以直接应用于实际生产环境,为机器学习模型的训练提供高质量的输入数据。 该手写化学式数据集包括以下特点和资源扩充说明: 数据多样性:数据集涵盖从小学到大学水平的手写化学式,包括不同书写风格、字迹清晰度和复杂度,以适应不同年龄段和教育背景的识别需求。 质量控制:每个样本都经过了多轮的审核和校正,确保其代表性和准确性。错误的或不清晰的样本被排除,确保了数据集的整体质量。 标注信息:每个手写化学式样本都附带了详细的标注信息,包括化学式的正确文本表示、
2024-12-02 14:51:23 203B 数据集
1
该数据是通过裁剪人员后的图片,进行图像中手机的标注,适用于业务场景为先进行人员检测,再对人员图像中手机进行二次检测。 里面含有打电话数据共8201张,已进行标注和调整,有VOC标注格式和yolo标注格式两种,可直接用于YOLO的训练。也可转为自己想用的其他格式。 另有人员未打电话数据集10000多张,无标注内容。结合打电话数据集,可适用于分类模型的训练。 数据场景种类多,数据量大,数据质量高,实测yolov5目标检测训练效果好,模型可通用于各种场景下的识别,实际现场识别准确率能达到90%。
2024-12-02 10:11:37 932.17MB 数据集 目标检测 模型训练 深度学习
1
1.校园信息原始数据集 1.学生基本信息 字段说明 学号 性别 年龄 姓名 专业 取这几个值: 文学与人文、社会科学、自然科学、工程与技术、医学与健康 艺术与设计、教育、法律、商科与管理、农学与环境科学 籍贯 2.学生成绩信息 字段说明 学号 姓名 学年 大一、大二、大三、大四 绩点 取值范围0-4,小数 评级 (0-2.2)差,(2.2-2.7)中等,(2.7-3.2)良,(3.2-4.0)优 3.学生消费记录 字段说明 学号 姓名 消费超市名 取: 校园购吧、校园便利坊、学子优选、校园易购、校园好物、学生便利汇 6个超市名 消费金额 取值范围:0-100之间 消费日期
2024-12-01 00:24:25 2.45MB 数据分析 数据集
1
标题 "北京地铁数据SHP,地铁站点和地铁线路" 提供了我们正在处理的数据主题,主要涉及北京地铁的地理信息。这些数据集通常用于地图绘制、交通分析、城市规划等多种用途。SHP(Shapefile)是一种常见的矢量地理数据格式,由Esri公司开发,用于存储地理空间特征如点、线和多边形。 描述中提到“数据来源:高德地图”和“数据更新于:2024年01月24日”,这意味着这些数据是从高德地图获取的,高德是中国知名的在线地图服务提供商,提供实时交通信息、导航等服务。数据的最新更新日期确保了信息的时效性,对研究者和开发者来说非常重要,因为这代表了数据反映了最近的北京地铁网络状态。 标签 "数据集 GIS SHP 北京地铁" 进一步明确了数据的类型和应用领域。"数据集" 指的是多个相关数据文件的集合;"GIS"(Geographic Information System,地理信息系统)是一种将地理位置与相关属性数据结合分析的工具;"SHP" 已经在标题中解释过,是数据格式;而 "北京地铁" 是这些数据所关注的具体区域和主题。 根据压缩包子文件的文件名称列表,我们有两个文件: 1. `bj_station.geojson` - 这个文件很可能包含了北京地铁站的地理坐标和其他相关属性信息。GeoJSON是一种开放的、轻量级的数据格式,用于存储地理空间信息,它基于JavaScript对象表示法(JSON)。在这个文件中,每个地铁站可能被表示为一个GeoJSON Feature对象,包含了一个Point几何类型(代表地铁站的位置),以及关于站名、线路、坐标等的属性。 2. `bjlineTest.geojson` - 这个文件可能代表了北京地铁线路的数据。同样使用GeoJSON格式,可能包含多条LineString或MultiLineString几何对象,每一条代表一条地铁线路,属性可能包括线路名称、颜色、方向等信息。 使用这些数据,我们可以进行以下分析和应用: - 地铁线路的网络分析:研究线路长度、换乘点分布、站点间距离等。 - 交通流量分析:结合乘客流量数据,分析各站点的繁忙程度。 - 城市规划:评估地铁对周边社区的影响,比如商业布局、人口密度变化。 - 导航服务:开发或优化基于地铁的导航应用。 - 可视化展示:通过GIS软件或Web地图服务展示北京地铁网络,帮助公众了解地铁线路和站点。 通过GIS软件(如QGIS、ArcGIS)或编程语言(如Python的geopandas库)可以轻松读取和处理这些GeoJSON文件,进一步挖掘数据中的价值。
2024-11-28 11:07:52 36KB 数据集 GIS 北京地铁
1
以下是对原资源文件介绍的另一种表述: "我们整理了一个堪称史上最全面的人脸数据集,这是我在毕业设计阶段针对人脸识别研究而精心收集的。该数据集包含多个知名的人脸库,如ORL、Yale、AT&T和MIT。其中,ORL库拥有多种尺寸的bmp和pgm格式人脸图像,共计1200幅;Yale库则包含了15个人的11幅bmp格式人脸图像,每幅图像尺寸为100100;MIT库更是囊括了2706幅bmp格式的人脸图像和4381幅非人脸图像,所有图像均为2020尺寸。如此丰富的人脸数据集,无疑将对您
2024-11-26 21:06:22 16.86MB 数据集 学习资料
1
这是一个适合进行数据分析练习的基础数据集,由tableau官方提供,有兴趣的朋友们可以下载进行练习。
2024-11-25 03:19:33 3.04MB 数据分析 数据集
1
数据集在IT行业中,特别是在机器学习和计算机视觉领域,扮演着至关重要的角色。"各种病虫害的高清数据集"是一个专门针对农业病虫害识别的图像数据集,它包含了五个不同类别的高清图片,这些图片是jpg格式,非常适合用于训练和测试深度学习模型。 我们来详细了解一下数据集的概念。数据集是模型训练的基础,它包含了一系列有标记的样本,这些样本用于训练算法学习特定任务的特征和模式。在这个案例中,数据集中的每个样本都是一张病虫害的高清图片,可能包括农作物上的疾病症状或害虫。这些图片经过分类,分别属于五个不同的类别,这意味着模型将需要学习区分这五种不同的病虫害类型。 在计算机视觉任务中,高清图片通常能提供更多的细节,有助于模型更准确地学习和理解图像特征。jpg格式是一种常见的图像存储格式,它采用了有损压缩算法,能在保持图像质量的同时,减少文件大小,适合在网络传输和存储中使用。 对于这样的数据集,可以进行以下几种机器学习任务: 1. 图像分类:训练一个模型,输入一张病虫害图片,输出图片所属的类别。例如,输入一张叶片有斑点的图片,模型应该能够判断出这是哪种病害。 2. 目标检测:除了识别类别,还需要确定病虫害在图片中的位置,这要求模型能够定位并框出病虫害的具体区域。 3. 实例分割:进一步细化目标检测,不仅指出病虫害的位置,还能精确到每个个体,这对于计算病虫害数量或者分析病害程度非常有用。 4. 异常检测:训练模型识别健康的农作物图像,当出现病虫害时,模型会发出警报,帮助农民尽早发现并处理问题。 构建这样的模型通常涉及以下几个步骤: 1. 数据预处理:包括图片的缩放、归一化、增强(如翻转、旋转)等,目的是提高模型的泛化能力。 2. 模型选择:可以使用经典的卷积神经网络(CNN),如AlexNet、VGG、ResNet等,或者预训练模型如ImageNet上的模型,再进行微调。 3. 训练与验证:通过交叉验证确保模型不会过拟合,并调整超参数以优化性能。 4. 测试与评估:在独立的测试集上评估模型的性能,常用的指标有准确率、召回率、F1分数等。 5. 部署与应用:将训练好的模型部署到实际系统中,如智能手机APP或农田监控系统,实时识别并报告病虫害情况。 "各种病虫害的高清数据集"为开发精准的农业智能识别系统提供了基础,通过AI技术可以帮助农业实现智能化、精准化管理,提升农作物的产量和质量,对现代农业发展具有重要意义。
2024-11-22 10:52:16 840.11MB 数据集
1
道路车辆检测图像数据集_含21种各种不同的车辆类型+3004张高质量真实场景道路车辆图片+已做YOLO格式标注_可用于深度学习算法训练
2024-11-21 15:24:43 116.38MB 数据集 目标检测 车辆检测
1
● 数据集介绍:城市道路行驶车辆检测数据集,真实监控场景高质量图片数据,涉及场景丰富,比如城市道路快速行驶车辆、城市道路慢速行驶车辆、城市道路密集行驶车辆、城市道路夜间低光行驶车辆数据等。数据集标注标签划分为 "car"、"van"、"bus"、"others" 四个类别; ● 适用实际项目应用:交通道路监控场景下驾驶车辆检测项目,以及作为监控场景通用车辆检测数据集场景数据的补充; ● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练; ● 附赠训练示例:提供 YOLOv8、YOLOv5 一键训练脚本,提供 GPU(GPUs)、CPU、Mac(M芯片) 多平台训练方案支持,提供博主训练结果日志供参考; 注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式! ### 目标检测-城市道路行驶车辆检测数据集解析 #### 数据集概述 该数据集主要针对城市道路上的车辆进行目标检测任务,包含了1000张真实监控场景下的高质量图像,涵盖了各种复杂的驾驶环境,例如快速行驶、慢速行驶、密集行驶以及夜间低光条件下行驶的车辆数据。这些丰富的场景不仅有助于提升模型在复杂环境中的鲁棒性,还能够为交通道路监控等实际项目提供强有力的数据支撑。 #### 数据集类别与应用场景 数据集中将车辆标注为四个类别:“car”、“van”、“bus”和“others”,这样的分类方式能够满足大多数交通监控场景下的需求。此外,该数据集还可以作为其他监控场景中通用车辆检测数据集的补充,进一步增强模型对不同车型的识别能力。 #### 标注工具与格式 该数据集采用了`labelimg`标注软件进行标注,这是一款开源且易于使用的图形界面标注工具,它支持多种标注格式,包括VOC(xml)、COCO(json)和YOLO(txt)。这些格式都是目前主流的目标检测算法(如YOLO系列)所支持的标准数据格式,可以直接用于模型训练而无需额外的数据转换处理,大大提高了研究效率。 #### 训练示例与支持平台 数据集还附带了YOLOv8和YOLOv5的一键训练脚本,这些脚本支持GPU(GPUs)、CPU以及Mac(M芯片)等多种硬件平台,极大地扩展了模型训练的灵活性。无论是使用高性能GPU加速训练过程,还是在没有GPU的情况下使用CPU进行训练,亦或是使用最新的Apple M系列芯片设备,用户都能够轻松上手并获得满意的训练效果。此外,博主还提供了自己的训练结果日志供学习者参考,帮助理解模型的表现情况,并进行相应的调整优化。 #### 数据集获取 为了方便下载,该数据集被托管在百度网盘上,具体下载方式如下: - 链接: [https://pan.baidu.com/s/1iyZHb0ygnar1d8LwtAEhKw](https://pan.baidu.com/s/1iyZHb0ygnar1d8LwtAEhKw) - 提取码: 6666 #### 数据集使用建议 1. **预处理阶段**:在使用数据集之前,建议先对数据进行预处理,包括但不限于数据清洗、尺寸统一、灰度图转RGB图等操作,以确保输入数据的质量。 2. **模型选择**:根据具体的任务需求和硬件条件,选择合适的模型版本进行训练。例如,在资源有限的情况下,可以选择YOLOv5n等轻量级模型;而在追求更高精度的应用场景中,则可以考虑使用YOLOv8等更复杂的模型。 3. **训练技巧**:在模型训练过程中,可以尝试不同的超参数设置、数据增强策略以及早停法等技术,来提高模型性能。 4. **评估与调优**:训练完成后,通过准确率、召回率等指标评估模型效果,并根据实际情况进行调整优化。 这个城市道路行驶车辆检测数据集不仅提供了丰富的标注数据,还配备了完善的训练脚本和支持文档,对于想要从事交通监控领域或车辆检测研究的人来说,是一个非常宝贵的学习资源。
2024-11-21 14:50:49 4.33MB YOLO COCO
1
● 数据集介绍:城市道路行驶车辆检测数据集,真实监控场景高质量图片数据,涉及场景丰富,比如城市道路快速行驶车辆、城市道路慢速行驶车辆、城市道路密集行驶车辆、城市道路夜间低光行驶车辆数据等。数据集标注标签划分为 "car"、"van"、"bus"、"others" 四个类别; ● 适用实际项目应用:交通道路监控场景下驾驶车辆检测项目,以及作为监控场景通用车辆检测数据集场景数据的补充; ● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练; ● 附赠训练示例:提供 YOLOv8、YOLOv5 一键训练脚本,提供 GPU(GPUs)、CPU、Mac(M芯片) 多平台训练方案支持,提供博主训练结果日志供参考; 注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式! ### 目标检测-城市道路行驶车辆检测数据集解析 #### 数据集概述 该数据集主要针对城市道路中行驶的各类车辆,旨在为交通监控、智能驾驶等应用场景提供丰富的图像资源与标注信息。数据集共包含10,000张高质量的真实监控场景图像,并覆盖了多种行车情况,例如快速行驶、慢速行驶、密集行驶以及夜间低光环境下的车辆。这些场景的多样性和复杂性对于提升模型的泛化能力和鲁棒性至关重要。 #### 类别划分 数据集中的车辆被细分为四个类别:“car”(轿车)、“van”(厢式车)、“bus”(公交车)以及“others”(其他)。这种细致的分类有助于更准确地识别不同类型的车辆,从而更好地服务于实际应用需求。例如,在交通管理中,区分不同类型车辆的能力对于制定合理的交通策略至关重要。 #### 标注工具与格式 所有图像均使用`labelimg`这一强大的标注工具进行了精细标注,确保了数据的质量。此外,为了方便用户使用,提供了三种常见的目标检测数据集格式:VOC(xml)、COCO(json)和YOLO(txt)。这三种格式几乎涵盖了目前主流的目标检测框架所需的数据格式,大大降低了数据预处理的工作量。 - **VOC**:这是一种广泛使用的数据集格式,主要用于Pascal VOC挑战赛。它使用XML文件来存储每个图像的元数据,包括对象的位置信息。 - **COCO**:Common Objects in Context(COCO)格式是一种更现代且功能更全面的数据集格式,适用于多个计算机视觉任务,如物体检测、分割等。COCO格式使用JSON文件来组织数据。 - **YOLO**:You Only Look Once(YOLO)格式非常适合快速训练和部署,因为它简单直观,仅使用文本文件来表示边界框坐标和类别的索引。 #### 训练支持 数据集还附带了针对YOLOv8和YOLOv5的一键训练脚本,这极大地简化了训练过程。支持多平台(GPU、CPU和Mac M芯片),使得不同硬件条件下的用户都能轻松进行模型训练。此外,还提供了训练日志供参考,这对于理解训练过程中的问题和优化模型非常有帮助。 #### 数据集划分脚本 数据集还包含了一个用于划分数据集的脚本。这个脚本可以将数据集自动划分为训练集、验证集和测试集,这是机器学习项目中非常重要的一步。通过合理划分数据集,可以有效地评估模型性能并避免过拟合。 #### 应用场景 此数据集特别适合应用于以下几种场景: - **交通监控**:监测道路上的车辆流量,识别异常行为(如闯红灯、逆行等)。 - **智能驾驶辅助系统**:帮助自动驾驶汽车识别周围的车辆类型和位置,提高驾驶安全性。 - **城市管理**:统计特定时间段内的车辆类型分布,为城市规划提供数据支持。 #### 获取方式 数据集可通过百度网盘链接下载:[链接](https://pan.baidu.com/s/1CJ-3SK3heWHzlVHb_PMKHA),提取码为6666。需要注意的是,由于数据集资源超过1GB,因此提供的下载文件为PDF格式,其中包含了数据集的基本情况介绍及获取完整数据集的方式。 该数据集以其丰富的场景覆盖、高质量的图像和标注、灵活的数据格式以及便捷的训练支持,为从事车辆检测相关研究或应用的开发者提供了一套非常有价值的数据资源。
2024-11-21 14:48:48 4.33MB 车辆检测 YOLO COCO
1